文章目录
1.预备知识
1.1 栈
S.empty() //1
S.push(10); //2
S.pop(); //3
1.2 队列
Q.push(5); //1
Q.pop(); //2
Q.push(1); //3
1.3 堆
big_heap.push(1000); //1
i<3 // 2
big_heap.pop(); //3
2.用队列实现栈
2.1 题目描述
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通队列的全部四种操作(push、top、pop 和 empty)
实现 MyStack 类:
void push(int x) 将元素 x 压入栈顶。
int pop() 移除并返回栈顶元素。
int top() 返回栈顶元素。
boolean empty() 如果栈是空的,返回 true ;否则,返回 false 。
你只能使用队列的基本操作 —— 也就是 push to back、peek/pop from front、size 和 is empty 这些操作。
你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
2.2 解题思路
2.3 C++实现
class MyStack {
public:
/** Initialize your data structure here. */
MyStack() {
}
/** Push element x onto stack. */
void push(int x) {
queue<int> temp_queue;
temp_queue.push(x);
while(!_data.empty()){
temp_queue.push(_data.front());
_data.pop();
}
while(!temp_queue.empty()){
_data.push(temp_queue.front());
temp_queue.pop();
}
}
/** Removes the element on top of the stack and returns that element. */
int pop() {
int x=_data.front();
_data.pop();
return x;
}
/** Get the top element. */
int top() {
return _data.front();
}
/** Returns whether the stack is empty. */
bool empty() {
return _data.empty();
}
private:
queue<int> _data;
};
3.用栈实现队列
3.1 题目描述
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):
实现 MyQueue 类:
void push(int x) 将元素 x 推到队列的末尾
int pop() 从队列的开头移除并返回元素
int peek() 返回队列开头的元素
boolean empty() 如果队列为空,返回 true ;否则,返回 false
说明:
你只能使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
3.2 解题思路
3.3 C++实现
class MyQueue {
public:
/** Initialize your data structure here. */
MyQueue() {
}
/** Push element x to the back of queue. */
void push(int x) {
stack<int> temp_stack;
while(!_data.empty()){
temp_stack.push(_data.top());
_data.pop();
}
temp_stack.push(x);
while(!temp_stack.empty()){
_data.push(temp_stack.top());
temp_stack.pop();
}
}
/** Removes the element from in front of queue and returns that element. */
int pop() {
int x=_data.top();
_data.pop();
return x;
}
/** Get the front element. */
int peek() {
return _data.top();
}
/** Returns whether the queue is empty. */
bool empty() {
return _data.empty();
}
private:
stack<int> _data;
};
4.最小栈
4.1 题目描述
设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。
push(x) —— 将元素 x 推入栈中。
pop() —— 删除栈顶的元素。
top() —— 获取栈顶元素。
getMin() —— 检索栈中的最小元素。
4.2 解题思路
class MinStack {
public:
/** initialize your data structure here. */
MinStack() {
}
void push(int val) {
_data.push(val);
if(_min.empty()){
_min.push(val);
}
else{
if(val>_min.top()){
val=_min.top();
}
_min.push(val);
}
}
void pop() {
_data.pop();
_min.pop();
}
int top() {
return _data.top();
}
int getMin() {
return _min.top();
}
private:
stack<int> _data;
stack<int> _min;
};
5.合法的出栈序列
5.1 题目描述
5.2 解题思路
5.3 C++实现
#include <iostream>
#include<queue>
#include<stack>
using namespace std;
bool check_is_valid_order(queue<int>& order)
{
stack<int> S;
int n = order.size();
for (int i = 1; i <= n; i++) {
S.push(i);
while (!S.empty() && S.top() == order.front()) {
S.pop();
order.pop();
}
}
if (!S.empty()) {
return false;
}
return true;
}
int main()
{
//合法:32541 ;非法:31245
queue<int> order1, order2;
bool a1, a2;
order1.push(3);
order1.push(2);
order1.push(5);
order1.push(4);
order1.push(1);
a1 = check_is_valid_order(order1);
if (a1 == true) {
cout << "32541合法" << endl;
}
else {
cout << "32541非法" << endl;
}
order2.push(3);
order2.push(1);
order2.push(2);
order2.push(4);
order2.push(5);
a2 = check_is_valid_order(order2);
if (a2 == true) {
cout << "31245合法" << endl;
}
else {
cout << "31245非法" << endl;
}
return 0;
}
6.基本计算器
6.1 题目描述
给你一个字符串表达式 s ,请你实现一个基本计算器来计算并返回它的值。
1 <= s.length <= 3 * 105
s 由数字、'+'、'-'、'('、')'、和 ' ' 组成
s 表示一个有效的表达式
6.2 解题思路
7.数组中的第K个最大元素
7.1 题目描述
在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
7.2 解题思路
7.3 C++实现
class Solution {
public:
int findKthLargest(vector<int>& nums, int k) {
priority_queue<int,vector<int>,greater<int>> Q;
for(int i=0;i<nums.size();i++){
if(Q.size()<k){
Q.push(nums[i]);
}
else if(Q.top()<nums[i]){
Q.pop();
Q.push(nums[i]);
}
}
return Q.top();
}
};
8.数据流的中位数
8.1 题目描述
中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
8.2 解题思路
8.3 C++实现
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
}
void addNum(int num) {
if(big_queue.empty()){
big_queue.push(num);
return;
}
if(big_queue.size()==small_queue.size()){
if(num<big_queue.top()){
big_queue.push(num);
}
else{
small_queue.push(num);
}
}
else if(big_queue.size()>small_queue.size()){
if(num>big_queue.top()){
small_queue.push(num);
}
else{
small_queue.push(big_queue.top());
big_queue.pop();
big_queue.push(num);
}
}
else if(small_queue.size()>big_queue.size()){
if(num<small_queue.top()){
big_queue.push(num);
}
else{
big_queue.push(small_queue.top());
small_queue.pop();
small_queue.push(num);
}
}
}
double findMedian() {
if(small_queue.size()==big_queue.size()){
return (small_queue.top()+big_queue.top())/2;
}
else if(small_queue.size()>big_queue.size()){
return small_queue.top();
}
return big_queue.top();
}
private:
priority_queue<double,vector<double>,greater<double>> small_queue;
priority_queue<double,vector<double>,less<double>> big_queue;
};