信号的互相关函数由傅里叶变换形式表达以及推导

互相关函数的信号傅里叶变换形式表达以及推导

1.我们要实现怎样的目标?

如果有两个复信号,
连续信号表示为 y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t);
离散信号表示为 y 1 ( n ) y_1(n) y1(n) y 2 ( n ) y_2(n) y2(n)
两个信号的互相关函数表示为 R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)
两个信号的傅里叶变换分别表示为 Y 1 ( w ) Y_1(w) Y1(w) Y 2 ( w ) Y_2(w) Y2(w)
两个信号的互功率谱表示为 P y 1 y 2 ( w ) P_{y_1y_2}(w) Py1y2(w)
两个信号的卷积表示为 y 1 ∗ y 2 y_1*y_2 y1y2
两个信号的共轭分别表示为 y 1 ∗ y_1^* y1 y 2 ∗ y_2^* y2

使用两个信号的傅里叶变换 Y 1 ( w ) Y_1(w) Y1(w) Y 2 ( w ) Y_2(w) Y2(w)来表示两个信号之间的互相关函数 R x y ( τ ) R_{xy}(\tau) Rxy(τ),则可表示为:

对于连续信号:

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ) = 1 2 π ∫ − ∞ + ∞ Y 1 ∗ ( w ) Y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(w)Y_2(w)e^{jw\tau}dw} 2π1+Y1(w)Y2(w)ejwτdw

对于离散信号:

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ) = 1 2 π ∫ 0 2 π Y 1 ∗ ( w ) Y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{Y_1^*(w)Y_2(w)e^{jw\tau}dw} 2π102πY1(w)Y2(w)ejwτdw

我们的目标是:
(1)完成公式 ( 1 − 1 ) (1-1) (11)推导
(3)在推导过程中,了解互相关函数,互功率谱、卷积和共轭之间的关系

2.一些基本知识的铺垫

在进行公式推导前,我们需要进行一些基础知识的铺垫。

2.1 什么是互相关函数?什么是实信号的互相关函数?

在2.1小节,我们都是讨论实信号,在2.2小节,我们再讨论复信号。

实信号 y 1 ( n ) y_1(n) y1(n) y 2 ( n ) y_2(n) y2(n)的互相关函数,简单的来说,就是把其中一个信号(假如是 y 2 ( n ) y_2(n) y2(n))平移一段距离 τ \tau τ,看它和另外一个信号( y 1 ( n ) y_1(n) y1(n))的相似程度。

互相关函数就是描述这个相似程度的高低,互相关函数是平移距离的函数,也就是说互相关函数随着平移距离 τ \tau τ的变化而变化。

那么互相关函数采用什么形式来描述这种相似程度呢?

对于连续型信号,我们使用平方积分来描述这种相似程度:
R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= ∫ − ∞ + ∞ y 1 ( t ) y 2 ( t + τ ) d t \displaystyle \int^{+\infty}_{-\infty}{y_1(t)y_2(t+\tau)dt} +y1(t)y2(t+τ)dt
如果 y 2 ( t ) y_2(t) y2(t)平移一段距离 τ \tau τ后,和 y 1 ( t ) y_1(t) y1(t)越相似,那么它们的乘积再积分一定越大。

对于离散信号,我们使用平方求和来描述这种相似程度:
R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= ∑ n = − ∞ + ∞ y 1 ( n ) y 2 ( n + τ ) \displaystyle \sum^{ +\infty}_{n =-\infty}{y_1(n)y_2(n+\tau)} n=+y1(n)y2(n+τ)
如果 y 2 ( t ) y_2(t) y2(t)平移一段距离 τ \tau τ后,和 y 1 ( t ) y_1(t) y1(t)越相似,那么它们的乘积再求和一定越大。

以上的互相关函数的描述形式是基于信号平方可积或平方可和(即有限能量)的前提下才成立。

假如 y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t)(或者 y 1 ( n ) y_1(n) y1(n) y 2 ( n ) y_2(n) y2(n))是“永远持续”的信号,那么无论是乘积积分,还是乘积求和,互相关函数都无法表示。那么对于永远持续”的信号如何描述它们之间的相似性呢?
永远持续”的信号被处理成随机过程,对于宽平稳随机过程,自相关函数定义为:

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= E [ y 1 ( t ) y 2 ( t + τ ) ] E[y_1(t)y_2(t+\tau)] E[y1(t)y2(t+τ)]

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= E [ y 1 ( n ) y 2 ( n + τ ) ] E[y_1(n)y_2(n+\tau)] E[y1(n)y2(n+τ)]

在实际的操作中,上述通过期望求互相关函数往往被处理成:
R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= E [ y 1 ( t ) y 2 ( t + τ ) ] E[y_1(t)y_2(t+\tau)] E[y1(t)y2(t+τ)]
= lim ⁡ T → − ∞ 1 T \displaystyle \lim_{T\to -\infty}{\frac{1}{T}} TlimT1 ∫ 0 T \displaystyle \int^{T}_{0} 0T y 1 ( t ) y 2 ( t + τ ) d t {y_1(t)y_2(t+\tau)dt} y1(t)y2(t+τ)dt

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= E [ y 1 ( n ) y 2 ( n + τ ) ] E[y_1(n)y_2(n+\tau)] E[y1(n)y2(n+τ)]

= lim ⁡ N → − ∞ 1 N \displaystyle \lim_{N\to -\infty}{\frac{1}{N}} NlimN1 ∑ n = 0 N − 1 y 1 ( n ) y 2 ( n + τ ) \displaystyle \sum^{ N-1}_{n=0}{y_1(n)y_2(n+\tau)} n=0N1y1(n)y2(n+τ)

2.2什么是复信号的互相关函数?

为什么复信号要使用共轭相乘?

y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t)(或者 y 1 ( n ) y_1(n) y1(n) y 2 ( n ) y_2(n) y2(n))是复信号时,互相关函数描述复信号的相似程度,这时若直接采用两个复信号相乘形式,起不到相似度叠加的效果,所以一般会取其中任一信号的共轭形式,然后在与另一信号相乘,所以互相关函数表示为:

(1)基于信号平方可积或平方可和(即有限能量)的互相关函数表达形式

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= ∫ − ∞ + ∞ y 1 ∗ ( t ) y 2 ( t + τ ) d t \displaystyle \int^{+\infty}_{-\infty}{y_1^*(t)y_2(t+\tau)dt} +y1(t)y2(t+τ)dt

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= ∑ n = − ∞ + ∞ y 1 ∗ ( n ) y 2 ( n + τ ) \displaystyle \sum^{ +\infty}_{n =-\infty}{y_1^*(n)y_2(n+\tau)} n=+y1(n)y2(n+τ)

(2)当复信号为“永久持续”的信号时

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= E [ y 1 ∗ ( t ) y 2 ( t + τ ) ] E[y_1^*(t)y_2(t+\tau)] E[y1(t)y2(t+τ)]

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= E [ y 1 ∗ ( n ) y 2 ( n + τ ) ] E[y_1^*(n)y_2(n+\tau)] E[y1(n)y2(n+τ)]

2.3什么是信号的互功率谱?互相关函数和互功率谱之间的关系?

互功率谱就是对互相关函数的傅里叶变换。
对于连续信号:
P y 1 y 2 ( w ) P_{y_1y_2}(w) Py1y2(w)= ∫ − ∞ + ∞ R y 1 y 2 ( τ ) e − j w τ d τ \displaystyle \int^{+\infty}_{-\infty}{R_{y_1y_2}(\tau)e^{-jw\tau}d\tau} +Ry1y2(τ)ejwτdτ
所以互相关函数和互功率谱实际是一对傅里叶变换对,由此
R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ) = 1 2 π ∫ − ∞ + ∞ P y 1 y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{P_{y_1y_2}(w)e^{jw\tau}dw} 2π1+Py1y2(w)ejwτdw

对于离散信号:
P y 1 y 2 ( w ) P_{y_1y_2}(w) Py1y2(w)= ∑ τ = − ∞ + ∞ R y 1 y 2 ( τ ) e − j w τ \displaystyle \sum^{ +\infty}_{\tau =-\infty}{R_{y_1y_2}(\tau)e^{-jw\tau}} τ=+Ry1y2(τ)ejwτ

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ) = 1 2 π ∫ 0 2 π P y 1 y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{P_{y_1y_2}(w)e^{jw\tau}dw} 2π102πPy1y2(w)ejwτdw

2.4卷积和两个信号卷积的傅里叶变换?

两个信号的卷积的傅里叶变换等于它们各自傅里叶变换的乘积。

Y 1 ( w ) Y_1(w) Y1(w)= ∫ − ∞ + ∞ y 1 ( τ ) e − j w τ d τ \displaystyle \int^{+\infty}_{-\infty}{y_1(\tau)e^{-jw\tau}d\tau} +y1(τ)ejwτdτ
Y 2 ( w ) Y_2(w) Y2(w)= ∫ − ∞ + ∞ y 2 ( τ ) e − j w τ d τ \displaystyle \int^{+\infty}_{-\infty}{y_2(\tau)e^{-jw\tau}d\tau} +y2(τ)ejwτdτ

Y 1 ( w ) Y_1(w) Y1(w) Y 2 ( w ) Y_2(w) Y2(w)= ∫ − ∞ + ∞ y 1 ( τ ) ∗ y 2 ( τ ) e − j w τ d τ \displaystyle \int^{+\infty}_{-\infty}{y_1(\tau)*y_2(\tau)e^{-jw\tau}d\tau} +y1(τ)y2(τ)ejwτdτ

3.使用两个信号的傅里叶变换表示两个信号之间的互相关函数

3.1若 y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t)为连续信号,且满足信号平方可积

则由2.1节知:

两个复信号之间的互相关函数为:

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= ∫ − ∞ + ∞ y 1 ∗ ( t ) y 2 ( t + τ ) d t \displaystyle \int^{+\infty}_{-\infty}{y_1^*(t)y_2(t+\tau)dt} +y1(t)y2(t+τ)dt

但现在我们要用两个信号的傅里叶变化来表示它们的互相关函数,那么可以如何表示呢?
我们首先给出表达形式如下,然后进行推导。

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= 1 2 π ∫ − ∞ + ∞ Y 1 ∗ ( w ) Y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(w)Y_2(w)e^{jw\tau}dw} 2π1+Y1(w)Y2(w)ejwτdw

因为:

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= ∫ − ∞ + ∞ y 1 ∗ ( t ) y 2 ( t + τ ) d t \displaystyle \int^{+\infty}_{-\infty}{y_1^*(t)y_2(t+\tau)dt} +y1(t)y2(t+τ)dt

t = − t ′ t=-t^{'} t=t, t ′ = − t t^{'}=-t t=t

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= ∫ + ∞ − ∞ y 1 ∗ ( − t ′ ) y 2 ( − t ′ + τ ) d − t ′ \displaystyle \int^{-\infty}_{+\infty}{y_1^*(-t^{'})y_2(-t^{'}+\tau)d-t^{'}} +y1(t)y2(t+τ)dt
\quad\quad\quad\quad = ∫ + ∞ − ∞ y 1 ∗ ( − t ′ ) y 2 ( − t ′ + τ ) d − t ′ \displaystyle \int^{-\infty}_{+\infty}{y_1^*(-t^{'})y_2(-t^{'}+\tau)d-t^{'}} +y1(t)y2(t+τ)dt

\quad\quad\quad\quad = ∫ − ∞ + ∞ y 1 ∗ ( − t ′ ) y 2 ( − t ′ + τ ) d t ′ \displaystyle \int^{+\infty}_{-\infty}{y_1^*(-t^{'})y_2(-t^{'}+\tau)dt^{'}} +y1(t)y2(t+τ)dt
\quad\quad\quad\quad = y 1 ∗ ( − τ ) ∗ y 2 ( τ ) y_1^*(-\tau)*y_2(\tau) y1(τ)y2(τ)

由2.3节知:

P y 1 y 2 ( w ) P_{y_1y_2}(w) Py1y2(w)= ∫ − ∞ + ∞ R y 1 y 2 ( τ ) e − j w τ d τ \displaystyle \int^{+\infty}_{-\infty}{R_{y_1y_2}(\tau)e^{-jw\tau}d\tau} +Ry1y2(τ)ejwτdτ
\quad\quad\quad\quad = ∫ − ∞ + ∞ y 1 ∗ ( − τ ) ∗ y 2 ( τ ) e − j w τ d τ \displaystyle \int^{+\infty}_{-\infty}{y_1^*(-\tau)*y_2(\tau)e^{-jw\tau}d\tau} +y1(τ)y2(τ)ejwτdτ

由2.4节知:

P y 1 y 2 ( w ) P_{y_1y_2}(w) Py1y2(w)= ∫ − ∞ + ∞ y 1 ∗ ( − τ ) ∗ y 2 ( τ ) e − j w τ d τ \displaystyle \int^{+\infty}_{-\infty}{y_1^*(-\tau)*y_2(\tau)e^{-jw\tau}d\tau} +y1(τ)y2(τ)ejwτdτ
\quad\quad\quad\quad = ∫ − ∞ + ∞ y 1 ∗ ( − τ ) e − j w τ d τ × ∫ − ∞ + ∞ y 2 ( τ ) e − j w τ d τ \displaystyle \int^{+\infty}_{-\infty}{y_1^*(-\tau)e^{-jw\tau}d\tau}\times \displaystyle \int^{+\infty}_{-\infty}{y_2(\tau)e^{-jw\tau}d\tau} +y1(τ)ejwτdτ×+y2(τ)ejwτdτ
\quad\quad\quad\quad = ∫ − ∞ + ∞ y 1 ∗ ( − τ ) e − j w τ d τ × Y 2 ( w ) \displaystyle \int^{+\infty}_{-\infty}{y_1^*(-\tau)e^{-jw\tau}d\tau}\times Y_2(w) +y1(τ)ejwτdτ×Y2(w)

τ = − τ ′ \tau=-\tau^{'} τ=τ, τ ′ = − τ \tau^{'}=-\tau τ=τ,则

P y 1 y 2 ( w ) P_{y_1y_2}(w) Py1y2(w)= ∫ + ∞ − ∞ y 1 ∗ ( τ ′ ) e j w τ ′ d ( − τ ′ ) × Y 2 ( w ) \displaystyle \int^{-\infty}_{+\infty}{y_1^*(\tau^{'})e^{jw\tau^{'}}d(-\tau^{'})}\times Y_2(w) +y1(τ)ejwτd(τ)×Y2(w)
\quad\quad\quad\quad = ∫ − ∞ + ∞ y 1 ∗ ( τ ′ ) e j w τ ′ d τ ′ × Y 2 ( w ) \displaystyle \int^{+\infty}_{-\infty}{y_1^*(\tau^{'})e^{jw\tau^{'}}d\tau^{'}}\times Y_2(w) +y1(τ)ejwτdτ×Y2(w)
\quad\quad\quad\quad = ∫ − ∞ + ∞ y 1 ∗ ( τ ′ ) e j w τ ′ d τ ′ × Y 2 ( w ) \displaystyle \int^{+\infty}_{-\infty}{y_1^*(\tau^{'})e^{jw\tau^{'}}d\tau^{'}}\times Y_2(w) +y1(τ)ejwτdτ×Y2(w)
\quad\quad\quad\quad = ( ∫ − ∞ + ∞ y 1 ( τ ′ ) e − j w τ ′ d τ ′ ) ∗ × Y 2 ( w ) (\displaystyle \int^{+\infty}_{-\infty}{y_1(\tau^{'})e^{-jw\tau^{'}}d\tau^{'}})^*\times Y_2(w) (+y1(τ)ejwτdτ)×Y2(w)

\quad\quad\quad\quad = Y 1 ∗ ( w ) Y 2 ( w ) Y_1^*(w)Y_2(w) Y1(w)Y2(w)

由2.3知:

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ) = 1 2 π ∫ − ∞ + ∞ P y 1 y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{P_{y_1y_2}(w)e^{jw\tau}dw} 2π1+Py1y2(w)ejwτdw
\quad\quad\quad\quad = 1 2 π ∫ − ∞ + ∞ Y 1 ∗ ( w ) Y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(w)Y_2(w)e^{jw\tau}dw} 2π1+Y1(w)Y2(w)ejwτdw
\quad\quad\quad\quad = 1 2 π ∫ − ∞ + ∞ Y 1 ∗ ( w ) Y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(w)Y_2(w)e^{jw\tau}dw} 2π1+Y1(w)Y2(w)ejwτdw

由此我们完成了连续信号的互相关函数的推导过程。

w = − w ′ w=-w^{'} w=w, w ′ = − w w^{'}=-w w=w,则

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ) = 1 2 π ∫ + ∞ − ∞ Y 1 ∗ ( − w ′ ) Y 2 ( − w ′ ) e − j w ′ τ d ( − w ′ ) \frac{1}{2\pi}\displaystyle \int^{-\infty}_{+\infty}{Y_1^*(-w^{'})Y_2(-w^{'})e^{-jw^{'}\tau}d(-w^{'})} 2π1+Y1(w)Y2(w)ejwτd(w)
\quad\quad\quad\quad = 1 2 π ∫ − ∞ + ∞ Y 1 ∗ ( − w ′ ) Y 2 ( − w ′ ) e − j w ′ τ d ( w ′ ) \frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(-w^{'})Y_2(-w^{'})e^{-jw^{'}\tau}d(w^{'})} 2π1+Y1(w)Y2(w)ejwτd(w)

y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t)是实信号,则由实信号的共轭对称性得:

Y 1 ∗ ( − w ′ ) Y_1^*(-w^{'}) Y1(w)= Y 1 ( w ′ ) Y_1(w^{'}) Y1(w)

Y 2 ( − w ′ ) Y_2(-w^{'}) Y2(w)= Y 2 ∗ ( w ′ ) Y_2^*(w^{'}) Y2(w)

所以当 y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t)是实信号时,

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ) = 1 2 π ∫ − ∞ + ∞ Y 1 ∗ ( − w ′ ) Y 2 ( − w ′ ) e − j w ′ τ d w ′ \frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(-w^{'})Y_2(-w^{'})e^{-jw^{'}\tau}dw^{'}} 2π1+Y1(w)Y2(w)ejwτdw
\quad\quad\quad\quad = 1 2 π ∫ − ∞ + ∞ Y 1 ( w ′ ) Y 2 ∗ ( w ′ ) e − j w ′ τ d w ′ \frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1(w^{'})Y_2^*(w^{'})e^{-jw^{'}\tau}dw^{'}} 2π1+Y1(w)Y2(w)ejwτdw
\quad\quad\quad\quad = 1 2 π ∫ − ∞ + ∞ Y 1 ( w ) Y 2 ∗ ( w ) e − j w τ d w \frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1(w)Y_2^*(w)e^{-jw\tau}dw} 2π1+Y1(w)Y2(w)ejwτdw

3.2 若 y 1 ( n ) y_1(n) y1(n) y 2 ( n ) y_2(n) y2(n)为离散信号,且满足信号平方可和

则由2.1节知:

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= ∑ n = − ∞ + ∞ y 1 ( n ) y 2 ( n + τ ) \displaystyle \sum^{ +\infty}_{n =-\infty}{y_1(n)y_2(n+\tau)} n=+y1(n)y2(n+τ)

但现在我们要用两个信号的傅里叶变化来表示它们的互相关函数,那么可以如何表示呢?
我们首先给出表达形式如下,然后进行推导。

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ) = 1 2 π ∫ 0 2 π Y 1 ∗ ( w ) Y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{Y_1^*(w)Y_2(w)e^{jw\tau}dw} 2π102πY1(w)Y2(w)ejwτdw

因为:

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= ∑ n = − ∞ + ∞ y 1 ( n ) y 2 ( n + τ ) \displaystyle \sum^{ +\infty}_{n =-\infty}{y_1(n)y_2(n+\tau)} n=+y1(n)y2(n+τ)

n = − n ′ n=-n^{'} n=n, n ′ = − n n^{'}=-n n=n,则:

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ)= ∑ n ′ = − ∞ + ∞ y 1 ( − n ′ ) y 2 ( − n ′ + τ ) \displaystyle \sum^{ +\infty}_{n^{'} =-\infty}{y_1(-n^{'})y_2(-n^{'}+\tau)} n=+y1(n)y2(n+τ)

\quad\quad\quad\quad = y 1 ∗ ( − τ ) ∗ y 2 ( τ ) y_1^*(-\tau)*y_2(\tau) y1(τ)y2(τ)

由2.3节知:

P y 1 y 2 ( w ) P_{y_1y_2}(w) Py1y2(w)= ∑ τ = − ∞ + ∞ R y 1 y 2 ( τ ) e − j w τ \displaystyle \sum^{ +\infty}_{\tau =-\infty}{R_{y_1y_2}(\tau)e^{-jw\tau}} τ=+Ry1y2(τ)ejwτ

\quad\quad\quad\quad = ∑ τ = − ∞ + ∞ y 1 ∗ ( − τ ) e − j w τ × ∑ τ = − ∞ + ∞ y 2 ( τ ) e − j w τ \displaystyle \sum^{ +\infty}_{\tau =-\infty}{y_1^*(-\tau)e^{-jw\tau}} \times \displaystyle \sum^{ +\infty}_{\tau =-\infty}{y_2(\tau)e^{-jw\tau}} τ=+y1(τ)ejwτ×τ=+y2(τ)ejwτ

\quad\quad\quad\quad = Y 1 ∗ ( w ) Y 2 ( w ) Y_1^*(w)Y_2(w) Y1(w)Y2(w)

由2.3节知:

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ) = 1 2 π ∫ 0 2 π P y 1 y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{P_{y_1y_2}(w)e^{jw\tau}dw} 2π102πPy1y2(w)ejwτdw

\quad\quad\quad\quad = 1 2 π ∫ 0 2 π Y 1 ∗ ( w ) Y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{Y_1^*(w)Y_2(w)e^{jw\tau}dw} 2π102πY1(w)Y2(w)ejwτdw

y 1 ( n ) y_1(n) y1(n) y 2 ( n ) y_2(n) y2(n)为实信号,同理可得:

R y 1 y 2 ( τ ) R_{y_1y_2}(\tau) Ry1y2(τ) = 1 2 π ∫ 0 2 π Y 1 ∗ ( w ) Y 2 ( w ) e j w τ d w \frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{Y_1^*(w)Y_2(w)e^{jw\tau}dw} 2π102πY1(w)Y2(w)ejwτdw

\quad\quad\quad\quad = 1 2 π ∫ 0 2 π Y 1 ( w ) Y 2 ∗ ( w ) e − j w τ d w \frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{Y_1(w)Y_2^*(w)e^{-jw\tau}dw} 2π102πY1(w)Y2(w)ejwτdw

傅里叶变换(Fourier transform)是一种将一个函数转换为另一个函数的数学变换方法。而sa函数是一个采样函数,它根据一些特定规则对信号进行采样。 首先,假设我们有一个连续信号y(t),其中t表示时间。为了将这个连续信号转换为离散信号,我们需要进行采样。假设我们以时间间隔为T进行采样,得到的采样序列为y(n),其中n表示离散时间。 我们定义采样频率为Fs = 1/T,即每秒钟进行采样的次数。然后,我们可以通过傅里叶变换来将采样序列转换为频域表示。傅里叶变换公式如下: Y(k) = Σ y(n) * exp(-j * 2π * k * n / N) 其中,Y(k)表示频域中的幅度,k为频域中的频率序号,N为采样序列的长度,exp为欧拉公式中的指数函数,j为虚数单位。 对于sa函数,它是一个周期函数,即在一定时间间隔内重复。因此,在进行傅里叶变换时,我们可以利用信号的周期性质来简化计算。 具体来说,我们可以将采样序列看作是一个周期为N的序列,其中N为采样序列长度。然后,根据傅里叶级数展开的思想,我们可以将采样序列表示为一系列频率成分的叠加。 最后,我们通过傅里叶变换公式计算每个频率成分的幅度。这样,我们就可以得到表示信号在频域中的幅度分布。 总结一下,sa函数的傅里叶变换推导过程中,首先将连续信号进行采样得到离散序列,然后利用傅里叶变换公式将采样序列转换为频域表示。最终得到信号在频域中的幅度分布。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值