Description
小明和小红经常玩一个博弈游戏。给定一个n×n的棋盘,一个石头被放在棋盘的左上角。他们轮流移动石头。每一回合,选手只能把石头向上,下,左,右四个方向移动一格,并且要求移动到的格子之前不能被访问过。谁不能移动石头了就算输。假如小明先移动石头,而且两个选手都以最优策略走步,问最后谁能赢?
Input
输入文件有多组数据。
输入第一行包含一个整数n,表示棋盘的规模。
当输入n为0时,表示输入结束。
Output
对于每组数据,如果小明最后能赢,则输出”Alice”, 否则输出”Bob”, 每一组答案独占一行。
Sample Input
2
0
Sample Output
Alice
对于所有的数据,保证1<=n<=10000。
题解: n为偶时棋盘一定可以被若干个1*2的骨牌覆盖,先手每次都是从一块骨牌的一端走向另一端,后手总是走向另一块骨牌,所以最后时后手会走出到界外,所以先手必胜;n为奇时棋盘会被1*2的骨牌再加一格覆盖,所以先手走完一步后(即把多的一格走掉)又能被若干个1*2的骨牌覆盖了,此时变成后手走了,所以先后手互相转变,后手必胜。
#include<cstdio>
using namespace std;
int main()
{
int n;
while(scanf("%d",&n)&& n!=0)
{
if(n%2==0)
printf("Alice\n");
else printf("Bob\n");
}
}
启发:对于网格问题,我们要多多联系1*2骨牌,以其为突破口解决问题。