题目描述
以数组
intervals
表示若干个区间的集合,其中单个区间为intervals[i] = [starti, endi]
。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。
示例1
输入:intervals = [[1,3],[2,6],[8,10],[15,18]] 输出:[[1,6],[8,10],[15,18]] 解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例2
输入:intervals = [[1,4],[4,5]] 输出:[[1,5]] 解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
做题思路
- 设定merge存储合并区间
- 将题目给定的区间按照左端点升序排序
- 将第一个区间加入merge中,按顺序依次考虑之后的每个区间:
- 若当前区间的左端点在merge中最后一个区间的右端点之后,那么它们不会重合,所以 直接将这个区间加入merge中
- 否则,它们会重合,我们需要用当前区间的右端点更新merge中最后一个区间的右端点,将其置为二者的较大值
代码
class Solution {
public int[][] merge(int[][] intervals) {
if(intervals.length==0){
return new int[0][2];
}
Arrays.sort(intervals,(int[] o1,int[] o2)->o1[0]-o2[0]); //根据区间的左边界值进行升序排列
List<int[]> merge=new ArrayList<int[]>(); //存放合并区间
for(int i=0;i<intervals.length;i++){
int l=intervals[i][0],r=intervals[i][1]; //获取区间的左边界值和右边界值
if(merge.size()==0||merge.get(merge.size()-1)[1]<l){ //若merge为空或者merge中最后一个区间的右边界值小于当前区间的左边界值,将当前区间加入到merge中
merge.add(new int[]{l,r});
}else{ //否则就意味着可以进行合并,比较merge中最后一个区间的右边界值和当前区间的右边界值,将两者中的较大值作为合并区间的右边界值,左边界值保持不变
merge.get(merge.size()-1)[1]=Math.max(merge.get(merge.size()-1)[1],r);
}
}
return merge.toArray(new int[merge.size()][]);
}
}