合并区间(中等)

题目描述

以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。

示例1

输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

示例2

输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。

做题思路

- 设定merge存储合并区间

- 将题目给定的区间按照左端点升序排序

- 将第一个区间加入merge中,按顺序依次考虑之后的每个区间:

   - 若当前区间的左端点在merge中最后一个区间的右端点之后,那么它们不会重合,所以                  直接将这个区间加入merge中

   - 否则,它们会重合,我们需要用当前区间的右端点更新merge中最后一个区间的右端点,将其置为二者的较大值

代码

class Solution {
    public int[][] merge(int[][] intervals) {
        if(intervals.length==0){
            return new int[0][2];
        }
        Arrays.sort(intervals,(int[] o1,int[] o2)->o1[0]-o2[0]); //根据区间的左边界值进行升序排列
        List<int[]> merge=new ArrayList<int[]>(); //存放合并区间
        for(int i=0;i<intervals.length;i++){
            int l=intervals[i][0],r=intervals[i][1]; //获取区间的左边界值和右边界值
            if(merge.size()==0||merge.get(merge.size()-1)[1]<l){ //若merge为空或者merge中最后一个区间的右边界值小于当前区间的左边界值,将当前区间加入到merge中
                merge.add(new int[]{l,r});
            }else{ //否则就意味着可以进行合并,比较merge中最后一个区间的右边界值和当前区间的右边界值,将两者中的较大值作为合并区间的右边界值,左边界值保持不变
                merge.get(merge.size()-1)[1]=Math.max(merge.get(merge.size()-1)[1],r);
            }
        }
        return merge.toArray(new int[merge.size()][]);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值