题目描述
给你两个单词
word1
和word2
, 请返回将word1
转换成word2
所使用的最少操作数 。你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例1
输入:word1 = "horse", word2 = "ros" 输出:3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')
示例2
输入:word1 = "intention", word2 = "execution" 输出:5 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')
做题思路
- 定义dp数组
dp[i][j]表示以下标i-1为结尾的字符串word1和以下标j-1为结尾的字符串word2的最近编辑距离。
- 确定递推公式
@ word1[i-1]==word2[j-1]时,不需要任何编辑,dp[i][j]=dp[i-1][j-1]
@ word1[i-1]!=word2[j-1]时,可能会进行增、删、换的操作
# word1删除一个元素:dp[i][j]=dp[i-1][j]+1
# word2删除一个元素:dp[i][j]=dp[i][j-1]+1
# 增加元素和删除元素属于同一种情况,即word2添加一个元素相当于word1删除一个元素
# 替换元素:dp[i][j]=dp[i-1][j-1]+1
# 由于寻找的是最近编辑距离,所以应为上述三者中的最小值
- dp初始化
dp[i][0]=i:以下标i-1为结尾的字符串word1和空字符串word2的最近距离,即相当于对word1里面的元素全部做删除操作;
dp[0][j]=j同理。
代码
class Solution {
public int minDistance(String word1, String word2) {
int len1=word1.length();
int len2=word2.length();
//dp数组有效位从1开始
int[][] dp=new int[len1+1][len2+1];
//初始化
for(int i=1;i<=len1;i++){
dp[i][0]=i;
}
for(int j=1;j<=len2;j++){
dp[0][j]=j;
}
for(int i=1;i<=len1;i++){
for(int j=1;j<=len2;j++){
if(word1.charAt(i-1)==word2.charAt(j-1)){
dp[i][j]=dp[i-1][j-1];
}else{
dp[i][j]=Math.min(dp[i-1][j-1],Math.min(dp[i-1][j],dp[i][j-1]))+1;
}
}
}
return dp[len1][len2];
}
}