pytorch学习3之加载数据集

本文介绍了如何在PyTorch中加载数据集,包括DataLoader的使用,如设置`shuffle`参数用于每轮训练时的数据洗牌,`batch_size`指定每个批次样本数量,以及`num_workers`设定多进程加载数据的线程数。通过`enumerate(train_loader, 0)`进行遍历,详细解析了其内部的可迭代序列和起始位置。" 92264596,8257132,嵌入式定时器/计数器实验解析,"['嵌入式开发', '定时器实验', '微控制器']
摘要由CSDN通过智能技术生成
import torch
from torch.utils.data import Dataset  #Dataset是抽象类,不能实例化,只能继承
from torch.utils.data import DataLoader
import numpy as np


class Set_Dataset(Dataset):
    def __init__(self, filepath):
        xy = np.loadtxt(filepath, delimiter=',', dtype='float32')
        self.len = xy.shape[0]
        self.x_data = torch.from_numpy(xy[:, :-1])
        self.y_data = torch.from_numpy(xy[:, [-1]])

    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]

    def __len__(self):
        return self.len


class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 1)
        self.sigmoid = torch.nn.Sigmoid()
    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值