PyTorch基础教程学习笔记(八):训练一个分类器

数据应该怎么办呢?

通常来说,当必须处理图像、文本、音频或视频数据时,可以使用python标准库将数据加载到numpy数组里。然后将这个数组转化成torch.*Tensor

  • 对于图片,有Pillow,OpenCV等包可以使用
  • 对于音频,有scipy和librosa等包可以使用
  • 对于文本,不管是原生python的或者是基于Cython的文本,可以使用NLTK和SpaCy

特别对于视觉方面,我们创建了一个包,名字叫torchvision,其中包含了针对Imagenet、CIFAR10、MNIST等常用数据集的数据加载器(data loaders),还有对图片数据变形的操作,即torchvision.datasetstorch.utils.data.DataLoader

这提供了极大的便利,可以避免编写样板代码。

Pytorch——计算机视觉工具包:torchvision

torchvision独立于Pytorch,需通过pip install torchvision 安装。
torchvision 主要包含以下三部分:

  • models : 提供深度学习中各种经典的网络结构以及训练好的模型,包括Alex Net, VGG系列、ResNet系列、Inception系列等;
  • datasets:提供常用的数据集加载,设计上都是继承torch.utils.data.Dataset,主要包括MMIST、CIFAR10/100、ImageNet、COCO等;
  • transforms: 提供常用的数据预处理操作,主要包括对Tensor及PIL Image对象的操作。详细介绍:pytorch中的torchvision.transforms模块详解

在这个教程中,将使用CIFAR10数据集,它有如下的分类:“飞机”,“汽车”,“鸟”,“猫”,“鹿”,“狗”,“青蛙”,“马”,“船”,“卡车”等。在CIFAR-10里面的图片数据大小是3x32x32,即三通道彩色图,图片大小是32x32像素。

CIFAR10


训练一个图片分类器

按顺序做以下步骤:

  1. 通过torchvision加载CIFAR10里面的训练和测试数据集,并对数据进行标准化
  2. 定义卷积神经网络
  3. 定义损失函数
  4. 利用训练数据训练网络
  5. 利用测试数据测试网络

加载并标准化CIFAR10

使用torchvision, 很简单.

import torch
import torchvision
import torchvision.transforms as transforms

torchvision.transforms是pytorch中的图像预处理包,包含了很多种对图像数据进行变换的函数,这些都是在我们进行图像数据读入步骤中必不可少的。

torchvision的输出是PILImage, 范围[0,1]. 我们将其转化为归一化到[-1, 1]范围的Tensor.

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

transforms.Compose(transforms) 方法是将多种变换组合在一起。

transforms.ToTensor() 将PILImage转变为torch.FloatTensor的数据形式;

ToTensor()能够把灰度范围从0-255变换到0-1之间,而后面的transform.Normalize()则把0-1变换到(-1,1).具体地说,对每个通道而言,Normalize执行以下操作:

image=(image-mean)/std

其中mean和std分别通过(0.5,0.5,0.5)和(0.5,0.5,0.5)进行指定。原来的0-1最小值0则变成(0-0.5)/0.5=-1,而最大值1则变成(1-0.5)/0.5=1.

注意,多种组合变换有一定的先后顺序,处理PILImage的变换方法(大多数方法)都需要放在ToTensor方法之前,而处理tensor的方法(比如Normalize方法)就要放在ToTensor方法之后。

 

运行Pytorch tutorial代码报错:BrokenPipeError: [Errno 32] Broken pipe

源代码地址: Training a classifier (CIFAR10)

该问题的产生是由于windows下多线程的问题,和DataLoader类有关,具体细节点这里Fix memory leak when using multiple workers on Windows

解决方案:

    修改调用torch.utils.data.DataLoader()函数时的 num_workers 参数。该参数官方API解释如下: 

  • num_workers (int, optional) – how many subprocesses to use for data loading. 0
    means that the data will be loaded in the main process. (default: 0)

    该参数是指在进行数据集加载时,启用的线程数目。截止当前2018年5月9日11:15:52,如官方未解决该BUG,则可以通过修改num_works参数为 ,只启用一个主进程加载数据集,避免在windows使用多线程即可。

 

相关:

数据集读取相关有专门的笔记博客:

  1. 待记录
  2. 待记录
  3. 待记录

Out:

Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
Extracting ./data/cifar-10-python.tar.gz to ./data
Files already downloaded and verified

让我们看看训练数据什么样.

import matplotlib.pyplot as plt
import numpy as np

# functions to show an image


def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
../../_images/sphx_glr_cifar10_tutorial_001.png
  •  plt.imshow(np.transpose(npimg, (1, 2, 0)))。因为在plt.imshow在现实的时候输入的是(imagesize,imagesize,channels),而def imshow(img,text,should_save=False)中,参数img的格式为(channels,imagesize,imagesize),这两者的格式不一致,我们需要调用一次np.transpose函数,即np.transpose(npimg,(1,2,0)),将npimg的数据格式由(channels,imagesize,imagesize)转化为(imagesize,imagesize,channels),进行格式的转换后方可进行显示。
  • isttuple等都是可迭代对象,我们可以通过iter()函数获取这些可迭代对象的迭代器。然后我们可以对获取到的迭代器不断使next()函数来获取下⼀条数据。iter()函数实际上就是调⽤了可迭代对象的    __iter__    ⽅法。

    >>>    li    =    [11,    22,    33,    44,    55]

    >>>    li_iter    =    iter(li)

    >>>    next(li_iter) 11

    >>>    next(li_iter) 22

    >>>    next(li_iter) 33

    >>>    next(li_iter) 44

    >>>    next(li_iter) 55

    >>>    next(li_iter)

    Traceback    (most    recent    call    last):

    File    "<stdin>",    line    1,    in    <module>

    StopIteration

    >>> 

    注意,当我们已经迭代完最后个数据之后,再次调next()函数会抛出 StopIteration的异常,来告诉我们所有数据都已迭代完成,不⽤再 next()函数了。


Out:

 bird horse   cat  frog

这里的4是batch_size决定的


Define a Convolutional Neural Network 定义一个卷积神经网络

将之前定义的网络拷贝过来, 修改为接收3通道图片(之前的接收单通道).

import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()

Define a Loss function and optimizer 定义一个loss函数和优化器

用分类交叉熵和带动量(momentum)的SGD.

import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

 


Train the network 训练网络

有意思的地方来了. 我们简单地在数据迭代器(data iterator)上循环遍历, 将输入喂给网络并优化.

for epoch in range(2):  # 在数据集上迭代多次

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(Variable(inputs))
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')
  • enumerate第二个参数,用于指定索引起始值,如:
list1 = ["这", "是", "一个", "测试"]
for index, item in enumerate(list1, 1):
    print index, item
>>>
1 这
2 是
3 一个
4 测试

out:

[1,  2000] loss: 2.205
[1,  4000] loss: 1.811
[1,  6000] loss: 1.636
[1,  8000] loss: 1.531
[1, 10000] loss: 1.466
[2,  2000] loss: 1.412
[2,  4000] loss: 1.376
[2,  6000] loss: 1.343
[2,  8000] loss: 1.301
[2, 10000] loss: 1.290
Finished Training

保存训练好的模型:

PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)

这里有更多的保存模型的细节.


Test the network on the test data 用测试数据测试网络

我们已经训练了两轮了, 我们看看网络是否学到东西了.
我们将模型输出的结果和真实结果(ground-truth)作比较. 如果预测是正确的, 我们将这个sample加到正确预测的list中.

dataiter = iter(testloader)
images, labels = dataiter.next()
# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

在这里插入图片描述

然后, 重新载入保存的模型(注意: 保存和重新载入模型不是必要的, 我们这里只是为了说明怎样做):

net = Net()
net.load_state_dict(torch.load(PATH))

好, 我们来看看模型分类结果如何:

outputs = net(Variable(images)) # 注意这里的images是我们从上面获得的那四张图片,所以首先要转化成variable

输出是10类的置信度(energy). 某一类的置信度越高, 网络认为图片是此类的可能性越大. 所以, 我们来获取最高的置信度:

_, predicted = torch.max(outputs.data, 1)
# 这个 _ , predicted是python的一种常用的写法,表示后面的函数其实会返回两个值
# 但是我们对第一个值不感兴趣,就写个_在那里,把它赋值给_就好,我们只关心第二个值predicted
# 比如 _ ,a = 1,2 这中赋值语句在python中是可以通过的,你只关心后面的等式中的第二个位置的值是多少
 
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
                              for j in range(4)))

 这里用到了torch.max(  ), 它是属于Tensor的一个方法:

注意到注释中第一句话,是说返回返回输入Tensor中每行的最大值,并转换成指定的dim(维度),

torch.max(outputs.data, 1) ,返回一个tuple (元组),元组的第一个元素是image data,即是最大的 值,第二个元素是label, 即是最大的值 的 索引.

我们只需要label(最大值的索引),所以就会有 _ , predicted这样的赋值语句,表示忽略第一个返回值,把它赋值给 _, 就是舍弃它的意思;

第二个参数1,是 the dimension to reduce 而不是去这个dimension上面找最大

所以这里dim=1,基于我们的a是 4行 x 4列 这么一个维度,所以指的是 消除列这个维度.

如果dim=0,它其实是在返回每列的最大值,

所以一定不要搞混!这里的dim是指的 the dimension to reduce!并不是在the dimension上去返回最大值。

用 torch.argmax()这个函数更直观更好理解一些

Out:

Predicted:    cat  ship  ship  ship

结果还不错, 我们来看看整个数据集上的表现:

correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(Variable(images))
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

Out:

Accuracy of the network on the 10000 test images: 53 %

看起来比随机猜测要好. 随机猜测正确率是10%. 看来网络确实学到了东西.
看看哪些类表现好, 哪些类表现不好:

class_correct = list(0. for i in range(10))# 定义一个存储每类中测试正确的个数的 列表,初始化为0
class_total = list(0. for i in range(10))# 定义一个存储每类中测试总数的个数的 列表,初始化为0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(Variable(images))
        _, predicted = torch.max(outputs.data, 1)
        c = (predicted == labels).squeeze()
        for i in range(4):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1

for i in range(10):
    print('Accuracy of %5s : %2d %%' % (
        classes[i], 100 * class_correct[i] / class_total[i]))

Out:

Accuracy of plane : 57 %
Accuracy of   car : 69 %
Accuracy of  bird : 41 %
Accuracy of   cat : 16 %
Accuracy of  deer : 41 %
Accuracy of   dog : 61 %
Accuracy of  frog : 63 %
Accuracy of horse : 76 %
Accuracy of  ship : 71 %
Accuracy of truck : 40 %

好了, 接下来做什么呢?
怎样在GPU上跑神经网络呢?


Training on GPU GPU上训练

正如将Tensor转到GPU上一样, 你可以将网络转到GPU上.
如果CUDA有效的话, 将device定义为第一个可用的cuda设备.

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Assuming that we are on a CUDA machine, this should print a CUDA device:

print(device)

Out:

cuda:0

剩下的部分, 我们认为device就是CUDA device.
然后这些方法将会递归地遍历我们的模型部件(module)并将他们的参数和buffer转为CUDA tensor:

net.to(device)

记住, 你必须要在每一步中将输入图像和目标输出都转到GPU上:

inputs, labels = data[0].to(device), data[1].to(device)

为什么我们有看到很大的速度提升? 因为你的模型太小了.

目标达成:

  • 在高层(high level)上理解Pytorch Tensor库和神经网络.
  • 训练一个分类图片的小神经网络.

Training on multiple GPUs 在多GPU上训练.

如果你想用多块GPU训练, 请看: Data Parallelism.

 

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值