基于机器学习的DDos攻击检测

本文探讨了基于机器学习的DDoS攻击检测方法,包括数据分析与特征工程,如数据来源、处理和模型构建。使用决策树、随机森林和XGBoost等模型,并通过调参优化性能。最终通过模型融合提升检测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2基于机器学习的DDoS攻击检测方法

环境:pycharm+python3.4

在这里插入图片描述

2.1数据分析与特征工程

2.1.1数据来源

kaggle

2.1.2数据大小

训练集:80万条
测试集:30万条

2.1.3 数据概况

读取数据后打印出各列数据的合计(count)、均值(mean)、方差(std)、最小(min)、下四分位数(25%)、中位数(50%)、上四分位数(75%)、最大(max):
下面展示一些 内联代码片

 #数据分析
    print(dataset.shape)       #查看数据行列数
    print(dataset.describe())    #查看数据 count、mean、std、 mean、max
    print(dataset.info())      #查看数据类型
    print(dataset.isnull().sum()) #查看数据是否为空

评论 53
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值