一个关键字为L(L>=1)的升序序列S,处在第L/2(取整)个位置的数称为S的中位数。例如,若序列S1=(11,13,15,17,19)则S1的中位数为15,若两个序列的中位数是含它们所有元素的升序序列的中位数。例如,若S2=(2,4,6,8,20),则S1和S2的中位数是11.现在有两个等长升序序列A和B,试设计一个在时间和空间两方面都尽可能高效的算法,找出两个序列A和B的中位数。
首先这道题有很多种解法,下面我们来看第一种,也是大家最容易想到的一种解法,主要算法思想如下:首先因为两个序列都是升序序列,我们只需把两个序列,分别用两个数组存储,然后合并到一个数组中,最后简单粗暴直接将这数组排序,最后直接输出L/2(L为合并后数组的长度)位置上的存储的数据即可,下面我们来看代码:
#include<iostream>
using namespace std;
int main(){
int m,n;
cin>>m>>n;
int a[m],b[n];
for(int i=0;i<m;i++)
cin>>a[i];
for(int i=0;i<n;i++)
cin>>b[i];
int c[m+n];
for(int i=0;i<m;i++){
c[i]=a[i];
}
int l=m+n;
int temp=0;
for(int i=m;i<l;i++){
c[i]=b[i-m];
}
for(int i=0;i<l;i++)
cout<<c[i]<<endl;
for(int i=0;i<l-1;i++){//采用普通的冒泡排序
for(int j=i+1;j<l;j++){
if(c[i]>c[j]){
temp=c[i];
c[i]=c[j];
c[j]=temp;
}
}
}
cout<<c[l/2-1]<<endl;
}
下面是运行结果:
从上面我们可以看出普通的冒泡排序时间复杂度太大,为O(n^2),空间复杂度为O(m+n);当然你们也可以采用其他排序方法来降低时间复杂度,但最低也为O(nlog2n),还是比较大的
所以我想出了另一种方法,如下:
#include<iostream>
using namespace std;
int M_Search(int a[],int b[],int n);
int main(){
int n;
cin>>n;
int a[n],b[n];
for(int i=0;i<n;i++)
cin>>a[i];
for(int i=0;i<n;i++)
cin>>b[i];
int mid=M_Search(a,b,n);
cout<<mid<<endl;
}
int M_Search(int a[],int b[],int n){
int s1=0,d1=n-1,m1,s2=1,d2=n-1,m2;
//s,d,m分别代表序列A,B的首位数,末尾数和中位数
while(s1!=d1||s2!=d2){
m1=(s1+d1)/2;
m2=(s2+d2)/2;
if(a[m1]==b[m2])//满足条件1
return a[m1];
if(a[m1]<b[m2]){//满足条件2
if((s1+d1)%2==0){// 若元素个数为奇数
s1=m1;//舍弃A中间结点以前的部分,且保留中间点
d2=m2;//舍弃B中间点以后的部分,且保留中间点
}
else{//若元素个数为偶数
s1=m1+1;//舍弃A中间点及中间点以前的部分
d2=m2;//舍弃B中间点以后的部分且保留中间点
}
}
else{//满足条件3
if((s1+d1)%2==0){// 若元素个数为奇数
d1=m1;//舍弃A中间结点以后的部分,且保留中间点
s2=m2;//舍弃B中间点以前的部分,且保留中间点
}
else{//若元素个数为偶数
d1=m1+1;//舍弃A中间点以后部分,且保留中间点
s2=m2;//舍弃B中间点及中间点以前部分
}
}
}
return a[s1]>b[s2] ? a[s1]:b[s2];
}
上面这个算法的时间复杂度仅为O(log2n),空间复杂度为O(1),几乎接近完美。我来解释一下这个算法。
条件1是指两个序列的中位数相等,那么这个中位数就是要求的数,直接输出即可。条件2是指如果a数组的中位数小于b数组的中位数,那么两个序列的中位数必在a数组的中位数和b数组的中位数之间,所以我们要舍去a数组中位数以前的数和b数组后面的数。这时还要进一步细分情况,因为这两个序列长度可能都为奇数或者偶数,如果是奇数,都保留中间结点即可,但是如果两个序列长度都是偶数的话,我们要保留中位数较大那个序列的中位数,并且要舍去另一个序列的中位数。
如此循环反复,直到两个序列均只剩下一个数,较大的那个即为所求的中位数。
运行结果如下:
从上面两张图,我们明显可以看出同样的输入输出所花费的时间截然不同,所以方法2更优!其实方法1是可以改进的,因为原来两个序列都是升序序列,所以我们不需要一个一个的比,找到一个比第一个更小的数就可以停止第二个循环了,这种方法的时间复杂度为O(n),空间复杂度也为O(n)。这种方法虽然第一种方法更好,但是还是比第二种方法逊色一些,所以这里我就不写了。