一个关键字为L(L>=1)的升序序列S,处在第L/2(取整)个位置的数称为S的中位数。例如,若序列S1=(11,13,15,17,19)则S1的中位数为15,若两个序列的中位数是含它们##

一个关键字为L(L>=1)的升序序列S,处在第L/2(取整)个位置的数称为S的中位数。例如,若序列S1=(11,13,15,17,19)则S1的中位数为15,若两个序列的中位数是含它们所有元素的升序序列的中位数。例如,若S2=(2,4,6,8,20),则S1和S2的中位数是11.现在有两个等长升序序列A和B,试设计一个在时间和空间两方面都尽可能高效的算法,找出两个序列A和B的中位数。
首先这道题有很多种解法,下面我们来看第一种,也是大家最容易想到的一种解法,主要算法思想如下:首先因为两个序列都是升序序列,我们只需把两个序列,分别用两个数组存储,然后合并到一个数组中,最后简单粗暴直接将这数组排序,最后直接输出L/2(L为合并后数组的长度)位置上的存储的数据即可,下面我们来看代码:

#include<iostream>
using namespace std;
int main(){
	int m,n;
	cin>>m>>n;
	int a[m],b[n];
	for(int i=0;i<m;i++)
	cin>>a[i];
	for(int i=0;i<n;i++)
	cin>>b[i];
	int c[m+n];
	for(int i=0;i<m;i++){
		c[i]=a[i];
	}
	int l=m+n;
	int temp=0;
	for(int i=m;i<l;i++){
		c[i]=b[i-m];
	}
	for(int i=0;i<l;i++)
	cout<<c[i]<<endl; 
	for(int i=0;i<l-1;i++){//采用普通的冒泡排序 
		for(int j=i+1;j<l;j++){
			if(c[i]>c[j]){
				temp=c[i];
				c[i]=c[j];
				c[j]=temp;
			}
		}
	}
	cout<<c[l/2-1]<<endl;
}

下面是运行结果:
在这里插入图片描述
从上面我们可以看出普通的冒泡排序时间复杂度太大,为O(n^2),空间复杂度为O(m+n);当然你们也可以采用其他排序方法来降低时间复杂度,但最低也为O(nlog2n),还是比较大的
所以我想出了另一种方法,如下:

#include<iostream>
using namespace std;
int M_Search(int a[],int b[],int n);
int main(){
	int n;
	cin>>n;
	int a[n],b[n];
	for(int i=0;i<n;i++)
	cin>>a[i];
	for(int i=0;i<n;i++)
	cin>>b[i];
	int mid=M_Search(a,b,n);
	cout<<mid<<endl;
}
int M_Search(int a[],int b[],int n){
	int s1=0,d1=n-1,m1,s2=1,d2=n-1,m2;
	//s,d,m分别代表序列A,B的首位数,末尾数和中位数
	while(s1!=d1||s2!=d2){
		m1=(s1+d1)/2;
		m2=(s2+d2)/2;
		if(a[m1]==b[m2])//满足条件1 
		return a[m1];
		if(a[m1]<b[m2]){//满足条件2 
			if((s1+d1)%2==0){// 若元素个数为奇数 
				s1=m1;//舍弃A中间结点以前的部分,且保留中间点
				d2=m2;//舍弃B中间点以后的部分,且保留中间点 
			}
			else{//若元素个数为偶数 
				s1=m1+1;//舍弃A中间点及中间点以前的部分 
				d2=m2;//舍弃B中间点以后的部分且保留中间点 
			}
		}
		else{//满足条件3 
			if((s1+d1)%2==0){// 若元素个数为奇数 
				d1=m1;//舍弃A中间结点以后的部分,且保留中间点
				s2=m2;//舍弃B中间点以前的部分,且保留中间点 
			}
			else{//若元素个数为偶数 
				d1=m1+1;//舍弃A中间点以后部分,且保留中间点 
				s2=m2;//舍弃B中间点及中间点以前部分 
			}
		}
	} 
	return a[s1]>b[s2] ? a[s1]:b[s2]; 
} 

上面这个算法的时间复杂度仅为O(log2n),空间复杂度为O(1),几乎接近完美。我来解释一下这个算法。
条件1是指两个序列的中位数相等,那么这个中位数就是要求的数,直接输出即可。条件2是指如果a数组的中位数小于b数组的中位数,那么两个序列的中位数必在a数组的中位数和b数组的中位数之间,所以我们要舍去a数组中位数以前的数和b数组后面的数。这时还要进一步细分情况,因为这两个序列长度可能都为奇数或者偶数,如果是奇数,都保留中间结点即可,但是如果两个序列长度都是偶数的话,我们要保留中位数较大那个序列的中位数,并且要舍去另一个序列的中位数。
如此循环反复,直到两个序列均只剩下一个数,较大的那个即为所求的中位数。
运行结果如下:
在这里插入图片描述
从上面两张图,我们明显可以看出同样的输入输出所花费的时间截然不同,所以方法2更优!其实方法1是可以改进的,因为原来两个序列都是升序序列,所以我们不需要一个一个的比,找到一个比第一个更小的数就可以停止第二个循环了,这种方法的时间复杂度为O(n),空间复杂度也为O(n)。这种方法虽然第一种方法更好,但是还是比第二种方法逊色一些,所以这里我就不写了。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值