2022春季数据结构期末考试总结

Table of contents


判断题

1.无向连通图至少有一个顶点的度为1。
T F

解析:如三个顶点三条边连成一个三角形的图每个顶点度为2

  • 无向图只有连通图,有向图只有强连通图。
  • 任一顶点出发进行一次深度优先搜索可访问所有顶点,说明任意两个结点连通,为连通图。

2.采用递归方式对顺序表进行快速排序,每次划分后,先处理较短的分区可以减少递归次数。
T F

解析:递归次数,取决于递归树,而递归树取决于轴枢的选择。树越平衡,递归次数越少。而对分区的长短处理顺序,影响的是递归时对栈的使用内存,而不是递归次数。


3.在散列表中,所谓同义词就是被不同散列函数映射到同一地址的两个元素。
T F

解析:映射到同一散列地址的关键字称为同义词。


4.对N个记录进行堆排序,需要的额外空间为O(N)。
T F

解析:堆排序仅需一个记录大小供交换用的辅助存储空间,所以空间复杂度为 O ( 1 ) O(1) O(1)


5.如果 e 是有权无向图 G 唯一的一条最短边,那么边 e 一定会在该图的最小生成树上。
T F

解析:给定带权无向连通图G,任意一条边e∈G且有e为G中权值最小的边(或之一),则存在一个G的最小生成树G’使e∈G’。这个命题是真的。证明可以直接借用Kruskal算法的正确性,因为选取某个权值最小边的操作正是Kruskal算法的第一步操作,你爱挑哪个都行,所以一定存在一个最小生成树包含某个最小边。


6.Prim 算法是通过每步添加一条边及其相连的顶点到一棵树,从而逐步生成最小生成树。
T F

解析:

  • prim算法是通过每步添加一条边及其相连的顶点到一棵树,从而逐步生成最小生成树
  • Kruskal 算法是维护一个森林,每一步把两棵树合并成一棵

单选题

1.有组记录的排序码为{33,65,74,26,49,12,50,86},则利用堆排序的方法建立的初始堆(大顶堆)为( )
选项
A 86,65,74,33,49,12,50,26
B 86,74,65,49,33,12,50,26
C 12,26,65,33,49,74,86,50
D 12,26,33,65,49,74,50,86

解释:如果堆的有序状态因为某个节点变得比它的父节点更大而打破,那么就需要通过交换它和它的父节点来修复堆。从最后一个非叶结点逐渐往上浮,直到有序。


2.已知普通表达式c/(e-f)*(a+b),对应的后缀表达式是( )
选项
A ef-c/ab+*
B c/e-f*a+b
C cef-/ab+*
D cef/-ab*+

解释:
给出一个中缀表达式:c/(e-f)*(a+b)
第一步:按照运算符的优先级对所有的运算单位加括号:式子变成了:((c/(e-f))*(a+b))
第二步:转换前缀与后缀表达式
前缀:把运算符号移动到对应的括号前面
则变成了:*(/(c-(ef))+(ab))
把括号去掉: */c-ef+ab前缀式子出现
后缀:把运算符号移动到对应的括号后面
则变成了:((c(ef)-)/(ab)+)*
把括号去掉: cef-/ab+*后缀式子出现


3.排序算法的效率,选择排序的时间复杂度为▁▁▁▁▁ 。
选项
A O ( n n ) O(n\sqrt{n}) O(nn )
B O ( n l o g 2 n ) O(nlog_{2}n) O(nlog2n)
C O ( n 2 ) O(n^{2}) O(n2)
D O ( 2 n ) O(2^n) O(2n)

解释:
选择排序(Selection sort)是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值