机器学习---之损失函数求最小值为什么不用导数为0的点而用梯度下降法

1.因为,损失函数可能有无限个极值点,你并不知道哪个点可以使损失函数最小,如下图中的损失函数:


2.而使用梯度下降法虽然不一定能求导全局最小值,但可以求导局部最小值,也能使损失函数降低为0,如下图所示:


3.如果损失函数是凹的或者是凸的时候,一定可以找到全局最优解,这个时候,在训练过程中你可以看到损失函数可能早都为0了,但还是在不断迭代找全局最优解,这个过程可能是无限的,因为函数的最小值可能是无穷小,这个时候即可以停止训练了。


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值