Deep Residual Learning for Image Recognition
摘要:
1.较深的神经网络难以训练
2.本文定义使用了残差块,并且证明使用残差块有利于网络收敛,使用152层的残差网络,能够提升精度,并且是vgg19的8倍那么深,并且具有更低的复杂性(计算出来的):
FLOPS与参数量的计算如下:
参数量:等于输入feature map的大小乘通道乘输出的通道,因为有多少个输出就要多少个神经元,+1代表是Bias也就是偏置。
FLOPS:输出feature map大小乘参数量,因为输出feature map中的每一个元素都需要计算一次,计算一次就需要用到整个参数量
3.我们使用残差网络,获得了ILSVRC2015的冠军,并在cifar10上尝试了100层和1000层(这里的100和1000指的是什么?网络吗)
4.深度残差网络是十分重要的,我们在2015coco数据集上得到了百分之28的相对提升呢个,并且在imagenet的检测,定位,coco的检测与分割上获得了冠军(coco2015,ILSVRC2015)
介绍:
1.较深的网络在很多视觉任务上都起到了很大的作用
2.但是随着网络的加深,梯度消失和梯度爆炸的问题就会显现出来
3.通过归一化,初始化[23, 9, 37, 13]的和中间层的归一化[16]可以使数10层的网络开始拟合
4.随着网络的加深,准确率会出现饱和,并且随后出现急剧下降,并且这不是由于过拟合导致的(什么叫准确率饱和?)
5.加一些层到相对合适的模型中会导致更高的训练错误率,并且也被我们实验验证了如下图所示
56层的plain网络比20层的plain网络训练错误率,和验证错误率都更高,并且在Imagenet上也验证了,如图4所示
`
Imagenet:
1我们在imagenet上展示了,我们深度残差网络更容易优化,而且plain net随着层数的增加会有高的错误率
2我们的残差网络可以随着深度的增加,精度也增加,而且比之前的网络都要深
cifar10:
我们的数据不仅适用于某一特定的数据集,我们在cifar10上实现了100层和1000层的残差网络
比vgg