【HDU3544】Alice's Game(不平等博弈)(Surreal Number)

传送门


不知道为什么,我总觉得这题我在初中搞MO的时候见过。

翻了一下网上的题解,好像没有用Surreal Number做的。

而且一大堆题解都只有一句一模一样的话,显然是抄的。

题解:

通过这道题终于把Surreal Number除了 ∗ , ↑ , ↓ *,\uparrow,\downarrow ,,以外的局面的计算规则搞明白了(这三种分别是 ∗ = { 0 ∣ 0 } , ↑ = { 0 ∣ ∗ } , ↓ = { ∗ ∣ 0 } *=\{0|0\},\uparrow=\{0|*\},\downarrow=\{*|0\} ={00},={0},={0},在这道题里面并没有出现)。

首先很容易发现这是一个不平等博弈,并且转移无环,那么用Surreal Number可行,接下来尝试。

容易注意到 x , y x,y x,y交换得到的局面一定是原局面的相反数,那么 x = y x=y x=y的局面游戏值一定为 0 0 0,我们只考虑 x > y x>y x>y的情况。

注意一下Surreal Number的一个计算规则, { x ∣ y } \{x|y\} {xy}的游戏值就是 ( x , y ) (x,y) (x,y)这个区间中离 0 0 0最近的整数,如果不存在这样的整数,就是分母为 2 2 2 k k k次幂,且 k k k最小的第一个数。

显然当 y = 1 y=1 y=1的时候游戏值为 x − 1 x-1 x1

接下来用一个二元组 ( y , x ) (y,x) (y,x)表示一个局面,尝试一下手玩 y = 2 y=2 y=2的前几项

( 2 , 2 ) = 0 (2,2)=0 (2,2)=0,这个显然。
( 2 , 3 ) = { ( 2 , 1 ) + ( 2 , 2 ) ∣ ( 1 , 3 ) + ( 1 , 3 ) } = { − 1 ∣ 4 } = 0 (2,3)=\{(2,1)+(2,2)|(1,3)+(1,3)\}=\{-1|4\}=0 (2,3)={(2,1)+(2,2)(1,3)+(1,3)}={14}=0
( 2 , 4 ) = { ( 2 , 1 ) + ( 2 , 3 ) , ( 2 , 2 ) + ( 2 , 2 ) ∣ ( 1 , 4 ) + ( 1 , 4 ) } = { − 1 , 0 ∣ 6 } = 1 (2,4)=\{(2,1)+(2,3),(2,2)+(2,2)|(1,4)+(1,4)\}=\{-1,0|6\}=1 (2,4)={(2,1)+(2,3),(2,2)+(2,2)(1,4)+(1,4)}={1,06}=1
接下来直接列化简之后的(即两边的决策只保留极值)。
( 2 , 5 ) = { ( 2 , 2 ) + ( 2 , 3 ) ∣ ( 1 , 5 ) + ( 1 , 5 ) } = 1 (2,5)=\{(2,2)+(2,3)|(1,5)+(1,5)\}=1 (2,5)={(2,2)+(2,3)(1,5)+(1,5)}=1
( 2 , 6 ) = { ( 2 , 2 ) + ( 2 , 4 ) ∣ ( 1 , 6 ) + ( 1 , 6 ) } = 2 (2,6)=\{(2,2)+(2,4)|(1,6)+(1,6)\}=2 (2,6)={(2,2)+(2,4)(1,6)+(1,6)}=2

仔细想一下可以发现:
( 2 , n ) = { ( 2 , 2 ) + ( 2 , n − 2 ) ∣ ( 1 , n ) + ( 1 , n ) } = { ( 2 , n − 2 ) ∣ 2 n − 2 } = ( 2 , n − 2 ) + 1 (2,n)=\{(2,2)+(2,n-2)|(1,n)+(1,n)\}=\{(2,n-2)|2n-2\}=(2,n-2)+1 (2,n)={(2,2)+(2,n2)(1,n)+(1,n)}={(2,n2)2n2}=(2,n2)+1

其实这里的思想就是切出来一个游戏值为 0 0 0的后继显然不会增加后手的机会。

尝试一下 y = 3 y=3 y=3可以发现右决策始终都比较大,并且左决策的切割方式和 y = 2 y=2 y=2的时候没有区别,都是且一个 ( y , 2 ) (y,2) (y,2)出去。

注意到 y = 4 y=4 y=4的时候不能继续切 ( y , 2 ) (y,2) (y,2),因为 ( 4 , 2 ) = − ( 2 , 4 ) = − 1 (4,2)=-(2,4)=-1 (4,2)=(2,4)=1,会给对手带来贡献,我们能切的就是 ( 4 , 4 ) (4,4) (4,4),剩下的那个就算带来负贡献也没有办法管了。

于是 ( 4 , x ) = { ( 4 , 4 ) + ( 4 , x − 4 ) ∣ ( 4 , x ) R } (4,x)=\{(4,4)+(4,x-4)|(4,x)_R\} (4,x)={(4,4)+(4,x4)(4,x)R}

其中 ( 4 , x ) R (4,x)_R (4,x)R表示该状态下的右决策。

注意在 x = 4 , 5 , 6 , 7 x=4,5,6,7 x=4,5,6,7的时候,由于前面的状态游戏值都是负数,而右状态的游戏值显然是正数,这时候的游戏值为 0 0 0。之后以 4 4 4为周期,游戏值不断 + 1 +1 +1

我们注意到这种切割方式在 y = 8 y=8 y=8的时候又要改变。

其实规律已经很明显了, ( y , x ) = − ( x , y ) (y,x)=-(x,y) (y,x)=(x,y)

假设 x ≥ y x\geq y xy,设 k = ⌊ log ⁡ 2 y ⌋ k=\lfloor\log_2y\rfloor k=log2y,则 ( y , x ) = ⌊ x 2 k ⌋ − 1 (y,x)=\lfloor\frac{x}{2^k}\rfloor-1 (y,x)=2kx1

不平等博弈的游戏值是所有不相关游戏的值之和,加起来判一下就好了。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const

int calc(){
	int x,y,t=1;
	scanf("%d%d",&x,&y);
	if(x<y)t=-1,std::swap(x,y);
	while(y&(y-1))y&=y-1;
	return t*(x/y-1);
}

void solve(int id){
	int n;ll ans=0;scanf("%d",&n);while(n--)ans+=calc();
	printf("Case %d: %s\n",id,ans>0?"Alice":"Bob");
}

signed main(){
#ifdef zxyoi
	freopen("game.in","r",stdin);
#endif
	int T;scanf("%d",&T);
	for(int re i=1;i<=T;++i)solve(i);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值