传送门
题解:
一个被完烂了的性质,在元素两两不同的归并排序中,结果等价于将所有序列按照前缀最大值划分之后,按照块头大小排序得到的序列。
显然划分只需要考虑长度为 1 , 2 , 3 1,2,3 1,2,3 的块。
那么只需要保证划分完了之后能够拼成 n n n 个长度为 3 的块即可,也就是 2 2 2 不比 1 1 1 多即可。
对于一个划分,方案为 N ! / ( ∏ i = 1 k ( ∑ j = 1 i a j ) ) N!/(\prod\limits_{i=1}^k(\sum_{j=1}^ia _j)) N!/(i=1∏k(∑j=1iaj))
维护一下 1 , 2 1,2 1,2 个数之差即可。
代码:
#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const
using std::cerr;
using std::cout;
int mod=998244353;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
inline int dec(int a,int b){return a-b<0?a-b+mod:a-b;}
inline int mul(int a,int b){ll r=(ll)a*b;return r>=mod?r%mod:r;}
inline void Inc(int &a,int b){a+=b-mod;a+=a>>31&mod;}
inline void Dec(int &a,int b){a-=b;a+=a>>31&mod;}
inline void Mul(int &a,int b){a=mul(a,b);}
cs int N=6e3+7;
int n;
int f[N][N+N];
void Main(){
scanf("%d%d",&n,&mod);
f[0][N]=1;int ans=0;
for(int re i=1;i<=3*n;++i){
int l=N-i+1,r=N+i-1;
for(int re j=l;j<=r;++j){
if(i>0)Inc(f[i][j+1],f[i-1][j]);
if(i>1)Inc(f[i][j-1],mul(f[i-2][j],i-1));
if(i>2)Inc(f[i][j],mul(f[i-3][j],(i-1)*(i-2)));
}
}for(int re i=N;i<=N+3*n;++i)
Inc(ans,f[3*n][i]);
cout<<ans<<"\n";
}
inline void file(){
#ifdef zxyoi
freopen("D.in","r",stdin);
#endif
}signed main(){file();Main();return 0;}