传送门
解析:
很好想的 D P DP DP啊。
思路:
这道题我拿到的思路就是朴素的最长不下降子序列做法。正确性十分显然。
而最长不下降子序列可以利用单调性优化为
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn),那么这道题是不是也能够利用一些特殊性质优化?
于是考虑位与的特殊性。
我们发现位与运算的结果只与各个位有关。
而只要一个位不为0就能够满足题意。
做法已经很显然了。
我们针对 32 32 32个位,分别记录之前当前位不为0的数续到这里最长的序列长度。
更新和查询的时候像树状数组一样不断减去 l o w b i t lowbit lowbit就行了
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define re register
#define gc getchar
#define pc putchar
#define cs const
inline
ll getint(){
re ll num;
re char c;
re bool f=0;
while(!isdigit(c=gc()))f^=c=='-';num=c^48;
while(isdigit(c=gc()))num=(num<<1)+(num<<3)+(c^48);
return f?-num:num;
}
inline
void outint(ll a){
static char ch[23];
if(a==0)pc('0');
if(a<0)a=-a,pc('-');
while(a)ch[++ch[0]]=a-a/10*10,a/=10;
while(ch[0])pc(ch[ch[0]--]^48);
}
#define lowbit(x) (x&(-x))
int len[32];
map<ll,int> ma;
inline
int query(int x){
int res=0;
for(;x;x-=lowbit(x)){
int pos=ma[lowbit(x)];
res=max(res,len[pos]);
}
return res;
}
inline
void update(int x,int tmp){
for(;x;x-=lowbit(x)){
int pos=ma[lowbit(x)];
len[pos]=max(len[pos],tmp);
}
}
int n,ans=1;
signed main(){
for(int re i=0;i<=31;++i)ma[1ll<<i]=i;
n=getint();
for(int re i=1;i<=n;++i){
int x=getint();
int tmp=query(x)+1;
update(x,tmp);
}
for(int re i=31;~i;--i)ans=max(ans,len[i]);
outint(ans);
return 0;
}