LeetCode - 164. Maximum Gap(最大间距)(桶)

LeetCode - 164. Maximum Gap(最大间距)(桶)

题目链接
题目

在这里插入图片描述

解析

桶排序思想和相关实现可以看下这篇博客
思路:

  • 先找到数组的最大值和最小值,记为maxmin
  • 假设数组长度为N,准备N+1个桶,把max放在N+1号桶,nums中在[min,max)范围上的数放在1~N号桶中,对于1 ~ N号桶的每一个桶来说,负责的区间大小为(max - min )/N
  • 注意每个桶中存的不是很多的数,只存三个值,是否有数进入过这个桶,以及所有进入这个桶的数的最大值、最小值;
  • 最后计算相邻非空桶的间距(当前桶的min 减去前一个桶的max) ,然后记录更新最大值;

比如下面的例子:

在这里插入图片描述
注意不一定就是空桶两侧的非空桶的答案:
在这里插入图片描述

class Solution {
    //将 num 映射到对应的桶子
    public int mapToBucket(long num, long len, long min, long max) {
        return (int) ((num - min) * len / (max - min));
    }

    public int maximumGap(int[] nums) {
        if (nums == null || nums.length < 2)
            return 0;
        int len = nums.length;
        int min = Integer.MAX_VALUE, max = Integer.MIN_VALUE;
        for (int i = 0; i < nums.length; i++) {
            min = nums[i] < min ? nums[i] : min;
            max = nums[i] > max ? nums[i] : max;
        }
        if (max == min)
            return 0;
        //准备 n + 1个桶
        boolean[] hasNum = new boolean[len + 1];
        int[] mins = new int[len + 1];
        int[] maxs = new int[len + 1];

        for (int i = 0; i < nums.length; i++) {
            int bid = mapToBucket(nums[i], len, min, max);
            mins[bid] = hasNum[bid] ? Math.min(mins[bid], nums[i]) : nums[i];
            maxs[bid] = hasNum[bid] ? Math.max(maxs[bid], nums[i]) : nums[i];
            hasNum[bid] = true;
        }
        int res = 0, preMax = maxs[0]; //第一个桶一定不空  因为一定有一个 最小值
        // 每一个非空桶 都找到 左边离它最近的非空桶  然后计算答案
        for (int i = 1; i <= len; i++) {
            if (hasNum[i]) { // 是非空的
                res = Math.max(res, mins[i] - preMax);
                preMax = maxs[i];
            }
        }
        return res;
    }
}
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值