ai环境cuda cudnn conda torch整体迁移 wsl docker


运行没问题的环境,wsl先关停wsl --shutdown
然后导出复制到迁移机器上wsl --export U24 E:\wsl\u24.tar
使用wsl版挂成虚拟机wsl --import U24 E:\wsl\ubuntu E:\wsl\u24.tar
使用docker版挂成镜像docker import E:\wsl\u24.tar my-ubuntu:custom
启动docker容器,挂载本地目录过去,命令行界面交互。docker run -it --rm --gpus all -v D:\pythonjuemi\metahuman\animatex\:/workspace my-ubuntu:custom /bin/bash
添加conda的环境变量,打开虚拟环境,运行项目。
echo 'export PATH=/root/anaconda3/bin:$PATH' >> ~/.bashrc
source ~/.bashrc
source activate animatex

<think>好的,我现在需要帮用户在WSL上配置用于AI开发的Ubuntu环境。首先,我得回顾一下用户提供的引用内容,看看有没有相关的步骤可以参考。 引用[1]提到启用WSL的第一步是使用Enable-WindowsOptionalFeature命令,所以用户可能已经完成了这一步,但还是要确认WSL是否已经安装正确。然后引用[2]和[3]讲的是安装GUI和导入发行版到指定位置,不过用户的问题是关于AI开发环境的,可能不需要GUI,但可能需要考虑GPU支持,因为很多AI框架需要CUDA。 接下来,我需要整理步骤。首先确保WSL已经安装,并且是Ubuntu发行版。然后更新系统,安装必要的工具,比如Python、pip、虚拟环境。接着安装AI相关的库,比如TensorFlow或PyTorch,这些可能需要CUDA的支持,所以需要检查WSL2的GPU配置是否正确,安装NVIDIA驱动。另外,可能还需要配置Jupyter Notebook方便开发。 用户可能会遗漏的步骤包括启用WSL2,因为WSL1可能不支持GPU。同时,安装CUDA工具包需要特定的版本,并且可能需要配置环境变量。此外,使用conda或venv来管理Python环境也是常见的做法,避免包冲突。 可能的问题:用户是否已经安装了WSL2?如果还是WSL1,需要先升级。另外,Windows版本是否支持GPU加速,需要检查系统要求。还有,安装CUDA时可能需要从NVIDIA官网下载适用于WSL的驱动,而不仅仅是Ubuntu的包。 因此,步骤应该是:1.确认WSL2和Ubuntu安装;2.更新系统;3.安装Python和工具;4.配置GPU支持;5.安装AI框架;6.设置开发环境(如Jupyter)。 需要提醒用户检查NVIDIA驱动是否正确安装,并在WSL中安装对应的CUDA工具包。另外,可能建议使用Docker容器来简化环境配置,比如NVIDIA提供的容器镜像。 最后,生成相关问题,可能涉及性能优化、常见错误处理、环境迁移等。</think>### 如何在WSL中配置AI开发的Ubuntu环境 #### 1. **确认WSL环境配置** - **启用WSL2**(需Windows 10版本2004+或Windows 11): ```powershell wsl --set-default-version 2 ``` 若未安装WSL,需先执行: ```powershell dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart ``` 重启后设置WSL2为默认版本[^1][^3]。 - **安装Ubuntu发行版**: 通过Microsoft Store安装Ubuntu(如22.04 LTS),或手动导入: ```powershell wsl --import Ubuntu-22.04 D:\wsl\Ubuntu-22.04 D:\wsl\Ubuntu-22.04.tar --version 2 ``` 完成后进入Ubuntu环境: ```bash wsl -d Ubuntu-22.04 ``` #### 2. **配置基础开发环境** - **更新系统并安装工具链**: ```bash sudo apt update && sudo apt upgrade -y sudo apt install -y python3 python3-pip python3-venv build-essential git ``` - **配置Python虚拟环境**: ```bash python3 -m venv ~/ai-env source ~/ai-env/bin/activate ``` #### 3. **启用GPU加速支持** - **安装NVIDIA驱动**: - Windows主机需安装[NVIDIA驱动(WSL专用版本)](https://developer.nvidia.com/cuda/wsl) - WSL内安装CUDA Toolkit: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/7fa2af80.pub sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/ /" sudo apt install -y cuda ``` 验证GPU支持: ```bash nvidia-smi ``` #### 4. **安装AI框架** - **PyTorch或TensorFlow**: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 # PyTorch (CUDA 11.8) # 或 pip install tensorflow[and-cuda] # TensorFlow 2.x ``` - **验证框架GPU识别**: ```python import torch print(torch.cuda.is_available()) # 应输出True ``` #### 5. **可选工具扩展** - **Jupyter Lab**: ```bash pip install jupyterlab jupyter lab --ip=0.0.0.0 --no-browser ``` 通过Windows浏览器访问`http://localhost:8888`。 - **Docker集成**: ```bash sudo apt install -y docker.io sudo usermod -aG docker $USER ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值