大数据-Sqoop(一)
目录
Sqoop工具初识
Sqoop是apache旗下的一款 ”Hadoop和关系数据库之间传输数据”的工具。
- 导入数据:将MySQL,Oracle导入数据到Hadoop的HDFS、HIVE、HBASE等数据存储系统。
- 导出数据:从Hadoop的文件系统中导出数据到关系数据库。
Sqoop工作机制
将导入和导出的命令翻译成mapreduce程序实现。在翻译出的mapreduce中主要是对inputformat和outputformat进行定制。
Sqoop1与2对比
sqoop在发展中的过程中演进出来了两种不同的架构。
sqoop1架构
版本号为1.4.x为sqoop1
- 在架构上:sqoop1使用sqoop客户端直接提交的方式
- 访问方式:CLI控制台方式进行访问
- 安全性:命令或脚本中指定用户数据库名及密码
sqoop2架构
版本号为1.99x为sqoop2
- 在架构上:sqoop2引入了sqoop server,对connector实现了集中的管理。
- 访问方式:REST API、 JAVA API、 WEB UI以及CLI控制台方式进行访问。
Sqoop安装部署
sqoop安装很简单,解压好进行简单的修改就可以使用。
第一步:下载安装包
http://archive.cloudera.com/cdh5/cdh/5/sqoop-1.4.6-cdh5.14.2.tar.gz
第二步:上传并解压
将我们下载好的安装包上传到node03服务器的/hlbdx/soft路径下,然后进行解压。
cd /hlbdx/soft/
tar -zxf sqoop-1.4.6-cdh5.14.2.tar.gz -C /hlbdx/install/
第三步:修改配置文件
更改sqoop的配置文件
cd /hlbdx/install/sqoop-1.4.6-cdh5.14.2/conf
mv sqoop-env-template.sh sqoop-env.sh
vim sqoop-env.sh
#Set path to where bin/hadoop is available
export HADOOP_COMMON_HOME=/hlbdx/install/hadoop-2.6.0-cdh5.14.2
#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=/hlbdx/install/hadoop-2.6.0-cdh5.14.2
#set the path to where bin/hbase is available
export HBASE_HOME=/hlbdx/install/hbase-1.2.0-cdh5.14.2
#Set the path to where bin/hive is available
export HIVE_HOME=/hlbdx/install/hive-1.1.0-cdh5.14.2
第四步:添加两个必要的jar包
sqoop需要两个额外依赖的jar包,将以下两个jar包添加到sqoop的lib目录下
第五步:配置sqoop的环境变量
sudo vim /etc/profile
export SQOOP_HOME=/hlbdx/install/sqoop-1.4.6-cdh5.14.2
export PATH=:$SQOOP_HOME/bin:$PATH
Sqoop数据导入
“导入工具”导入单个表从RDBMS到HDFS。表中的每一行被视为HDFS的记录。所有记录都存储为文本文件的文本数据(或者Avro、sequence文件等二进制数据)
列举出所有的数据库
- 命令行查看帮助
bin/sqoop list-databases --help
- 列出node03主机所有的数据库
bin/sqoop list-databases --connect jdbc:mysql://node03:3306/ --username root --password 123456
- 查看某一个数据库下面的所有数据表
bin/sqoop list-tables --connect jdbc:mysql://node03:3306/hive --username root --password 123456
其它导入示例
1、准备表数据
在mysql中有一个库userdb中三个表:emp, emp_add和emp_conn
建表语句如下:
CREATE DATABASE /*!32312 IF NOT EXISTS*/`userdb` /*!40100 DEFAULT CHARACTER SET utf8 */;
USE `userdb`;
DROP TABLE IF EXISTS `emp`;
CREATE TABLE `emp` (
`id` INT(11) DEFAULT NULL,
`name` VARCHAR(100) DEFAULT NULL,
`deg` VARCHAR(100) DEFAULT NULL,
`salary` INT(11) DEFAULT NULL,
`dept` VARCHAR(10) DEFAULT NULL,
`create_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
`update_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
`is_delete` BIGINT(20) DEFAULT '1'
) ENGINE=INNODB DEFAULT CHARSET=latin1;
INSERT INTO `emp`(`id`,`name`,`deg`,`salary`,`dept`) VALUES (1201,'gopal','manager',50000,'TP'),(1202,'manisha','Proof reader',50000,'TP'),(1203,'khalil','php dev',30000,'AC'),(1204,'prasanth','php dev',30000,'AC'),(1205,'kranthi','admin',20000,'TP');
DROP TABLE IF EXISTS `emp_add`;
CREATE TABLE `emp_add` (
`id` INT(11) DEFAULT NULL,
`hno` VARCHAR(100) DEFAULT NULL,
`street` VARCHAR(100) DEFAULT NULL,
`city` VARCHAR(100) DEFAULT NULL,
`create_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
`update_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
`is_delete` BIGINT(20) DEFAULT '1'
) ENGINE=INNODB DEFAULT CHARSET=latin1;
INSERT INTO `emp_add`(`id`,`hno`,`street`,`city`) VALUES (1201,'288A','vgiri','jublee'),(1202,'108I','aoc','sec-bad'),(1203,'144Z','pgutta','hyd'),(1204,'78B','old city','sec-bad'),(1205,'720X','hitec','sec-bad');
DROP TABLE IF EXISTS `emp_conn`;
CREATE TABLE `emp_conn` (
`id` INT(100) DEFAULT NULL,
`phno` VARCHAR(100) DEFAULT NULL,
`email` VARCHAR(100) DEFAULT NULL,
`create_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
`update_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
`is_delete` BIGINT(20) DEFAULT '1'
) ENGINE=INNODB DEFAULT CHARSET=latin1;
INSERT INTO `emp_conn`(`id`,`phno`,`email`) VALUES (1201,'2356742','gopal@tp.com'),(1202,'1661663','manisha@tp.com'),(1203,'8887776','khalil@ac.com'),(1204,'9988774','prasanth@ac.com'),(1205,'1231231','kranthi@tp.com');
2、导入数据库表数据到HDFS
下面的命令用于从MySQL数据库服务器中的emp表导入HDFS。
bin/sqoop import --connect jdbc:mysql://node03:3306/userdb --password 123456 --username root --table emp --m 1
如果成功执行,那么会得到下面的输出。
为了验证在HDFS导入的数据,请使用以下命令查看导入的数据
hdfs dfs -ls /user/root/emp
3、导入到HDFS指定目录
在导入表数据到HDFS使用Sqoop导入工具,我们可以指定目标目录。
使用参数 --target-dir来指定导出目的地,
使用参数—delete-target-dir来判断导出目录是否存在,如果存在就删掉。
bin/sqoop import --connect jdbc:mysql://node03:3306/userdb --username root --password 123456 --delete-target-dir --table emp --target-dir /sqoop/emp --m 1
查看导出的数据
hdfs dfs -text /sqoop/emp/part-m-00000
4、导入到hdfs指定目录并指定字段之间的分隔符
bin/sqoop import --connect jdbc:mysql://node03:3306/userdb --username root --password 123456 --delete-target-dir --table emp --target-dir /sqoop/emp2 --m 1 --fields-terminated-by '\t'
查看文件内容
hdfs dfs -text /sqoop/emp2/part-m-00000
5、导入关系表到HIVE
第一步:拷贝jar包
将我们mysql表当中的数据直接导入到hive表中的话,我们需要将hive的一个叫做hive-exec-1.1.0-cdh5.14.0.jar的jar包拷贝到sqoop的lib目录下。
cp /hlbdx/install/hive-1.1.0-cdh5.14.0/lib/hive-exec-1.1.0-cdh5.14.2.jar /hlbdx/install/sqoop-1.4.6-cdh5.14.2/lib/
第二步:准备hive数据库与表
将我们mysql当中的数据导入到hive表当中来
hive (default)> create database sqooptohive;
hive (default)> use sqooptohive;
hive (sqooptohive)> create external table emp_hive(id int,name string,deg string,salary int ,dept string) row format delimited fields terminated by '\001';
第三步:开始导入
bin/sqoop import --connect jdbc:mysql://node03:3306/userdb --username root --password 123456 --table emp --fields-terminated-by '\001' --hive-import --hive-table sqooptohive.emp_hive --hive-overwrite --delete-target-dir --m 1
第四步:hive表数据查看
select * from emp_hive;
6、导入关系表到hive并自动创建hive表
我们也可以通过命令来将我们的mysql的表直接导入到hive表当中去
bin/sqoop import --connect jdbc:mysql://node03:3306/userdb --username root --password 123456 --table emp_conn --hive-import -m 1 --hive-database sqooptohive;
通过这个命令,我们可以直接将我们mysql表当中的数据以及表结构一起倒入到hive当中去。
7、将mysql表数据导入到hbase当中去
第一步:修改sqoop配置文件
sqoop导入导出HBase的数据,需要修改sqoop的配置文件sqoop-env.sh
cd /hlbdx/install/sqoop-1.4.6-cdh5.14.2/conf
vim sqoop-env.sh
#Set path to where bin/hadoop is available
export HADOOP_COMMON_HOME=/hlbdx/install/hadoop-2.6.0-cdh5.14.2
#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=/hlbdx/install/hadoop-2.6.0-cdh5.14.2
#set the path to where bin/hbase is available
export HBASE_HOME=/hlbdx/install/hbase-1.2.0-cdh5.14.2
#Set the path to where bin/hive is available
export HIVE_HOME=/hlbdx/install/hive-1.1.0-cdh5.14.2
第二步:在mysql当中创建数据库以及数据库表并插入数据
创建数据库表
CREATE DATABASE IF NOT EXISTS library;
USE library;
CREATE TABLE book(
id INT(4) PRIMARY KEY NOT NULL AUTO_INCREMENT,
NAME VARCHAR(255) NOT NULL,
price VARCHAR(255) NOT NULL);
插入数据
INSERT INTO book(NAME, price) VALUES('Lie Sporting', '30');
INSERT INTO book (NAME, price) VALUES('Pride & Prejudice', '70');
INSERT INTO book (NAME, price) VALUES('Fall of Giants', '50');
第三步:将mysql表当中的数据导入HBase表当中去
执行以下命令,将mysql表当中的数据导入到HBase当中去
bin/sqoop import \
--connect jdbc:mysql://node03:3306/library \
--username root \
--password 123456 \
--table book \
--columns "id,name,price" \
--column-family "info" \
--hbase-create-table \
--hbase-row-key "id" \
--hbase-table "hbase_book" \
--num-mappers 1 \
--split-by id
第四步:HBase当中查看表数据
进入hbase的shell客户端,通过scan查看数据
hbase(main):057:0> scan 'hbase_book'
8、导入表数据子集
我们可以导入表的使用Sqoop导入工具,"where"子句的一个子集。它执行在各自的数据库服务器相应的SQL查询,并将结果存储在HDFS的目标目录。
where子句的语法如下
--where <condition>
按照条件进行查找,通过—where参数来查找表emp_add当中city字段的值为sec-bad的所有数据导入到hdfs上面去。
bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root --password 123456 --table emp_add \
--target-dir /sqoop/emp_add -m 1 --delete-target-dir \
--where "city = 'sec-bad'"
9、sql语句查找导入hdfs
我们还可以通过 –query参数来指定我们的sql语句,通过sql语句来过滤我们的数据进行导入
bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb --username root --password 123456 \
--delete-target-dir -m 1 \
--query 'select phno from emp_conn where 1=1 and $CONDITIONS' \
--target-dir /sqoop/emp_conn
查看hdfs数据内容
hdfs dfs -text /sqoop/emp_conn/part*
10、增量导入
在实际工作当中,数据的导入,很多时候都是只需要导入增量数据即可,并不需要将表中的数据全部导入到hive或者hdfs当中去,肯定会出现重复的数据的状况,所以我们一般都是选用一些字段进行增量的导入,为了支持增量的导入,sqoop也给我们考虑到了这种情况并且支持增量的导入数据
增量导入是仅导入新添加的表中的行的技术。
它需要添加‘incremental’, ‘check-column’, 和 ‘last-value’选项来执行增量导入。
下面的语法用于Sqoop导入命令增量选项。
--incremental <mode>
--check-column <column name>
--last value <last check column value>
第一种增量导入使用上面的选项来实现
导入emp表当中id大于1202的所有数据
注意:增量导入的时候,一定不能加参数--delete-target-dir否则会报错
bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp \
--incremental append \
--check-column id \
--last-value 1202 \
-m 1 \
--target-dir /sqoop/increment
查看数据内容
hdfs dfs -text /sqoop/increment/part*
第二种增量导入通过--where条件来实现
或者我们使用--where来进行控制数据的选取会更加精准
bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp \
--incremental append \
--where "create_time > '2018-06-17 00:00:00' and is_delete='1' and create_time < '2018-06-17 23:59:59'" \
--target-dir /sqoop/incement2 \
--check-column id \
--m 1
Sqoop数据导出
将数据从HDFS把文件导出到RDBMS数据库
默认操作是从将文件中的数据使用INSERT语句插入到表中
更新模式下,是生成UPDATE语句更新表数据
数据是在HDFS当中的如下目录/sqoop/emp,数据内容如下:
1201,gopal,manager,50000,TP,2018-06-17 18:54:32.0,2018-06-17 18:54:32.0,1
1202,manisha,Proof reader,50000,TP,2018-06-15 18:54:32.0,2018-06-17 20:26:08.0,1
1203,khalil,php dev,30000,AC,2018-06-17 18:54:32.0,2018-06-17 18:54:32.0,1
1204,prasanth,php dev,30000,AC,2018-06-17 18:54:32.0,2018-06-17 21:05:52.0,0
1205,kranthi,admin,20000,TP,2018-06-17 18:54:32.0,2018-06-17 18:54:32.0,1
第一步:创建mysql表
CREATE TABLE `emp_out` (
`id` INT(11) DEFAULT NULL,
`name` VARCHAR(100) DEFAULT NULL,
`deg` VARCHAR(100) DEFAULT NULL,
`salary` INT(11) DEFAULT NULL,
`dept` VARCHAR(10) DEFAULT NULL,
`create_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
`update_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
`is_delete` BIGINT(20) DEFAULT '1'
) ENGINE=INNODB DEFAULT CHARSET=utf8;
第二步:执行导出命令
通过export来实现数据的导出,将hdfs的数据导出到mysql当中去。
bin/sqoop export \
--connect jdbc:mysql://node03:3306/userdb \
--username root --password 123456 \
--table emp_out \
--export-dir /sqoop/emp \
--input-fields-terminated-by ","
第三步:验证mysql表数据
将数据从Hbase导出到mysql
将hbase_book这张表当中的数据导出到mysql当中来
注意:sqoop不支持我们直接将HBase当中的数据导出,所以我们可以通过以下的转换进行导出
Hbase→hive外部表→hive内部表→通过sqoop→mysql
第一步:创建hive外部表
进入hive客户端,创建hive外部表,映射hbase当中的hbase_book表
CREATE EXTERNAL TABLE course.hbase2mysql (id int,name string,price int)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
"hbase.columns.mapping" =
":key,info:name, info:price"
)
TBLPROPERTIES( "hbase.table.name" = "hbase_book",
"hbase.mapred.output.outputtable" = "hbase2mysql");
第二步:创建hive内部表并将外部表数据插入到内部表当中来
进入hive客户端,执行以下命令,创建hive内部表,并将外部表的数据插入到hive的内部表当中来
CREATE TABLE course.hbase2mysqlin(id int,name string,price int);
第三步:外部表数据插入内部表
进入hive客户端执行以下命令,将hive外部表数据插入到hive内部表当中来
insert overwrite table course.hbase2mysqlin select * from course.hbase2mysql;
第四步:清空mysql表数据
进入mysql客户端,执行以下命令,将mysql表数据清空。
TRUNCATE TABLE book;
第五步:执行sqoop导出hive内部表数据到mysql
bin/sqoop export -connect jdbc:mysql://node03:3306/library \
-username root -password 123456 \
-table book --export-dir /user/hive/warehouse/course.db/hbase2mysqlin \
--input-fields-terminated-by '\001' \
--input-null-string '\\N' \
--input-null-non-string '\\N';
此博文仅供学习参考,如有错误欢迎指正。
上一篇《大数据-Flume(九)》
下一篇《大数据-sqoop(二)》
希望对大数据相关技术感兴趣的友友们关注一下,大家可以一起交流学习哦~