大数据-sqoop(二)
目录
Sqoop作业介绍及使用
注:Sqoop作业——将事先定义好的数据导入导出任务按照指定流程运行
语法
以下是创建Sqoop作业的语法:
$ sqoop job (generic-args) (job-args)
[-- [subtool-name] (subtool-args)]
$ sqoop-job (generic-args) (job-args)
[-- [subtool-name] (subtool-args)]
创建作业(--create)
创建一个名为myjob,可以从RDBMS表的数据导入到HDFS作业。
bin/sqoop job --create myjob2 -- import --connect jdbc:mysql://node03:3306/userdb --username root --password 123456 --table emp --delete-target-dir
该命令创建了一个从db库的employee表导入到HDFS文件的作业。
验证作业 (--list)
‘--list’ 参数是用来验证保存的作业。下面的命令用来验证保存Sqoop作业的列表。
bin/sqoop job --list
它显示了保存作业列表:
检查作业(--show)
‘--show’ 参数用于检查或验证特定的工作,及其详细信息。以下命令和样本输出用来验证一个名为myjob的作业。
$ sqoop job --show myjob
它显示了工具和它们的选择,这是使用在myjob中作业情况。
执行作业 (--exec)
‘--exec’ 选项用于执行保存的作业。下面的命令用于执行保存的作业称为myjob。
bin/sqoop job --exec myjob2
Sqoop常用命令及参数
常用命令
命令 | 类 | 说明 |
import | ImportTool | 将数据导入到集群 |
export | ExportTool | 将集群数据导出 |
codegen | CodeGenTool | 获取数据库中某张表数据生成Java并打包Jar |
create-hive-table | CreateHiveTableTool | 创建Hive表 |
eval | EvalSqlTool | 查看SQL执行结果 |
import-all-tables | ImportAllTablesTool | 导入某个数据库下所有表到HDFS中 |
job
| JobTool | 用来生成一个sqoop的任务,生成后,该任务并不执行,除非使用命令执行该任务。 |
list-databases | ListDatabasesTool | 列出所有数据库名 |
list-tables | ListTablesTool | 列出某个数据库下所有表 |
merge | MergeTool | 将HDFS中不同目录下面的数据合在一起,并存放在指定的目录中 |
metastore
| MetastoreTool | 记录sqoop job的元数据信息,如果不启动metastore实例,则默认的元数据存储目录为:~/.sqoop,如果要更改存储目录,可以在配置文件sqoop-site.xml中进行更改。 |
help | HelpTool | 打印sqoop帮助信息 |
version | VersionTool | 打印sqoop版本信息 |
命令&参数详解
刚才列举了一些Sqoop的常用命令,对于不同的命令,有不同的参数,让我们来一一列举说明。
首先来我们来介绍一下公用的参数,所谓公用参数,就是大多数命令都支持的参数。
1、公用参数:数据库连接
序号 | 参数 | 说明 |
1 | --connect | 连接关系型数据库的URL |
2 | --connection-manager | 指定要使用的连接管理类 |
3 | --driver | JDBC的driver class |
4 | --help | 打印帮助信息 |
5 | --password | 连接数据库的密码 |
6 | --username | 连接数据库的用户名 |
7 | --verbose | 在控制台打印出详细信息 |
2、公用参数:import
序号 | 参数 | 说明 |
1 | --enclosed-by <char> | 给字段值前后加上指定的字符 |
2 | --escaped-by <char> | 对字段中的双引号加转义符 |
3 | --fields-terminated-by <char> | 设定每个字段是以什么符号作为结束,默认为逗号 |
4 | --lines-terminated-by <char> | 设定每行记录之间的分隔符,默认是\n |
5 | --mysql-delimiters | Mysql默认的分隔符设置,字段之间以逗号分隔,行之间以\n分隔,默认转义符是\,字段值以单引号包裹。 |
6 | --optionally-enclosed-by <char> | 给带有双引号或单引号的字段值前后加上指定字符。 |
3、公用参数:export
序号 | 参数 | 说明 |
1 | --input-enclosed-by <char> | 对字段值前后加上指定字符 |
2 | --input-escaped-by <char> | 对含有转移符的字段做转义处理 |
3 | --input-fields-terminated-by <char> | 字段之间的分隔符 |
4 | --input-lines-terminated-by <char> | 行之间的分隔符 |
5 | --input-optionally-enclosed-by <char> | 给带有双引号或单引号的字段前后加上指定字符 |
4、公用参数:hive
序号 | 参数 | 说明 |
1 | --hive-delims-replacement <arg> | 用自定义的字符串替换掉数据中的\r\n和\013 \010等字符 |
2 | --hive-drop-import-delims | 在导入数据到hive时,去掉数据中的\r\n\013\010这样的字符 |
3 | --map-column-hive <map> | 生成hive表时,可以更改生成字段的数据类型 |
4 | --hive-partition-key | 创建分区,后面直接跟分区名,分区字段的默认类型为string |
5 | --hive-partition-value <v> | 导入数据时,指定某个分区的值 |
6 | --hive-home <dir> | hive的安装目录,可以通过该参数覆盖之前默认配置的目录 |
7 | --hive-import | 将数据从关系数据库中导入到hive表中 |
8 | --hive-overwrite | 覆盖掉在hive表中已经存在的数据 |
9 | --create-hive-table | 默认是false,即,如果目标表已经存在了,那么创建任务失败。 |
10 | --hive-table | 后面接要创建的hive表,默认使用MySQL的表名 |
11 | --table | 指定关系数据库的表名 |
公用参数介绍完之后,我们来按照命令介绍命令对应的特有参数。
5、命令&参数:import
将关系型数据库中的数据导入到HDFS(包括Hive,HBase)中,如果导入的是Hive,那么当Hive中没有对应表时,则自动创建。
1) 命令:
如:导入数据到hive中
$ bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp \
--hive-import
如:增量导入数据到hive中,mode=append
append导入:
$ bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp \
--num-mappers 1 \
--fields-terminated-by "\t" \
--target-dir /user/hive/warehouse/emp \
--check-column id \
--incremental append \
--last-value 3
易错提醒:append不能与--hive-等参数同时使用(Append mode for hive imports is not yet supported. Please remove the parameter --append-mode)
如:增量导入数据到hdfs中,mode=lastmodified
先在mysql中建表并插入几条数据:
mysql> create table company.staff_timestamp(id int(4), name varchar(255), sex varchar(255), last_modified timestamp DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP);
mysql> insert into company.staff_timestamp (id, name, sex) values(1, 'AAA', 'female');
mysql> insert into company.staff_timestamp (id, name, sex) values(2, 'BBB', 'female');
先导入一部分数据:
$ bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp_conn \
--delete-target-dir \
--m 1
再增量导入一部分数据:
mysql> insert into company.staff_timestamp (id, name, sex) values(3, 'CCC', 'female');
$ bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
易错提醒:--incremental lastmodified模式下,last-value指定的值是会包含于增量导入的数据中。易错提醒:使用lastmodified方式导入数据要指定增量数据是要--append(追加)还是要--merge-key(合并)
2) 参数:
序号 | 参数 | 说明 |
1 | --append | 将数据追加到HDFS中已经存在的DataSet中,如果使用该参数,sqoop会把数据先导入到临时文件目录,再合并。 |
2 | --as-avrodatafile | 将数据导入到一个Avro数据文件中 |
3 | --as-sequencefile | 将数据导入到一个sequence文件中 |
4 | --as-textfile | 将数据导入到一个普通文本文件中 |
5 | --boundary-query <statement> | 边界查询,导入的数据为该参数的值(一条sql语句)所执行的结果区间内的数据。 |
6 | --columns <col1, col2, col3> | 指定要导入的字段 |
7 | --direct | 直接导入模式,使用的是关系数据库自带的导入导出工具,以便加快导入导出过程。 |
8 | --direct-split-size | 在使用上面direct直接导入的基础上,对导入的流按字节分块,即达到该阈值就产生一个新的文件 |
9 | --inline-lob-limit | 设定大对象数据类型的最大值 |
10 | --m或–num-mappers | 启动N个map来并行导入数据,默认4个。 |
11 | --query或--e <statement> | 将查询结果的数据导入,使用时必须伴随参--target-dir,--hive-table,如果查询中有where条件,则条件后必须加上$CONDITIONS关键字 |
12 | --split-by <column-name> | 按照某一列来切分表的工作单元,不能与--autoreset-to-one-mapper连用(请参考官方文档) |
13 | --table <table-name> | 关系数据库的表名 |
14 | --target-dir <dir> | 指定HDFS路径 |
15 | --warehouse-dir <dir> | 与14参数不能同时使用,导入数据到HDFS时指定的目录 |
16 | --where | 从关系数据库导入数据时的查询条件 |
17 | --z或--compress | 允许压缩 |
18 | --compression-codec | 指定hadoop压缩编码类,默认为gzip(Use Hadoop codec default gzip) |
19 | --null-string <null-string> | string类型的列如果null,替换为指定字符串 |
20 | --null-non-string <null-string> | 非string类型的列如果null,替换为指定字符串 |
21 | --check-column <col> | 作为增量导入判断的列名 |
22 | --incremental <mode> | mode:append或lastmodified |
23 | --last-value <value> | 指定某一个值,用于标记增量导入的位置 |
6、命令&参数:export
从HDFS(包括Hive和HBase)中奖数据导出到关系型数据库中。
1) 命令:
$ bin/sqoop export \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp_add \
--export-dir /user/company \
--input-fields-terminated-by "\t" \
--num-mappers 1
2) 参数:
序号 | 参数 | 说明 |
1 | --direct | 利用数据库自带的导入导出工具,以便于提高效率 |
2 | --export-dir <dir> | 存放数据的HDFS的源目录 |
3 | -m或--num-mappers <n> | 启动N个map来并行导入数据,默认4个 |
4 | --table <table-name> | 指定导出到哪个RDBMS中的表 |
5 | --update-key <col-name> | 对某一列的字段进行更新操作 |
6 | --update-mode <mode> | updateonly allowinsert(默认) |
7 | --input-null-string <null-string> | 请参考import该类似参数说明 |
8 | --input-null-non-string <null-string> | 请参考import该类似参数说明 |
9 | --staging-table <staging-table-name> | 创建一张临时表,用于存放所有事务的结果,然后将所有事务结果一次性导入到目标表中,防止错误。 |
10 | --clear-staging-table | 如果第9个参数非空,则可以在导出操作执行前,清空临时事务结果表 |
7、命令&参数:codegen
将关系型数据库中的表映射为一个Java类,在该类中有各列对应的各个字段。
$ bin/sqoop codegen \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp_add \
--bindir /home/admin/Desktop/staff \
--class-name Staff \
--fields-terminated-by "\t"
序号 | 参数 | 说明 |
1 | --bindir <dir> | 指定生成的Java文件、编译成的class文件及将生成文件打包为jar的文件输出路径 |
2 | --class-name <name> | 设定生成的Java文件指定的名称 |
3 | --outdir <dir> | 生成Java文件存放的路径 |
4 | --package-name <name> | 包名,如com.z,就会生成com和z两级目录 |
5 | --input-null-non-string <null-str> | 在生成的Java文件中,可以将null字符串或者不存在的字符串设置为想要设定的值(例如空字符串) |
6 | --input-null-string <null-str> | 将null字符串替换成想要替换的值(一般与5同时使用) |
7 | --map-column-java <arg> | 数据库字段在生成的Java文件中会映射成各种属性,且默认的数据类型与数据库类型保持对应关系。该参数可以改变默认类型,例如:--map-column-java id=long, name=String |
8 | --null-non-string <null-str> | 在生成Java文件时,可以将不存在或者null的字符串设置为其他值 |
9 | --null-string <null-str> | 在生成Java文件时,将null字符串设置为其他值(一般与8同时使用) |
10 | --table <table-name> | 对应关系数据库中的表名,生成的Java文件中的各个属性与该表的各个字段一一对应 |
8、命令&参数:create-hive-table
生成与关系数据库表结构对应的hive表结构。
命令:
$ bin/sqoop create-hive-table \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp_add \
--hive-table emp_add
参数:
序号 | 参数 | 说明 |
1 | --hive-home <dir> | Hive的安装目录,可以通过该参数覆盖掉默认的Hive目录 |
2 | --hive-overwrite | 覆盖掉在Hive表中已经存在的数据 |
3 | --create-hive-table | 默认是false,如果目标表已经存在了,那么创建任务会失败 |
4 | --hive-table | 后面接要创建的hive表 |
5 | --table | 指定关系数据库的表名 |
9、命令&参数:eval
可以快速的使用SQL语句对关系型数据库进行操作,经常用于在import数据之前,了解一下SQL语句是否正确,数据是否正常,并可以将结果显示在控制台。
命令:
$ bin/sqoop eval \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--query "SELECT * FROM emp"
参数:
序号 | 参数 | 说明 |
1 | --query或--e | 后跟查询的SQL语句 |
10、命令&参数:import-all-tables
可以将RDBMS中的所有表导入到HDFS中,每一个表都对应一个HDFS目录。
命令:
$ bin/sqoop import-all-tables \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--warehouse-dir /all_tables
参数:
序号 | 参数 | 说明 |
1 | --as-avrodatafile | 这些参数的含义均和import对应的含义一致 |
2 | --as-sequencefile | |
3 | --as-textfile | |
4 | --direct | |
5 | --direct-split-size <n> | |
6 | --inline-lob-limit <n> | |
7 | --m或—num-mappers <n> | |
8 | --warehouse-dir <dir> | |
9 | -z或--compress | |
10 | --compression-codec |
11、命令&参数:job
用来生成一个sqoop任务,生成后不会立即执行,需要手动执行。
命令:
$ bin/sqoop job \
--create myjob -- import-all-tables \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456
$ bin/sqoop job \
--list
$ bin/sqoop job \
--exec myjob
易错提醒:注意import-all-tables和它左边的--之间有一个空格
易错提醒:如果需要连接metastore,则--meta-connect jdbc:hsqldb:hsql://node03:16000/sqoop
参数:
序号 | 参数 | 说明 |
1 | --create <job-id> | 创建job参数 |
2 | --delete <job-id> | 删除一个job |
3 | --exec <job-id> | 执行一个job |
4 | --help | 显示job帮助 |
5 | --list | 显示job列表 |
6 | --meta-connect <jdbc-uri> | 用来连接metastore服务 |
7 | --show <job-id> | 显示一个job的信息 |
8 | --verbose | 打印命令运行时的详细信息 |
错提醒:在执行一个job时,如果需要手动输入数据库密码,可以做如下优化
<property>
<name>sqoop.metastore.client.record.password</name>
<value>true</value>
<description>If true, allow saved passwords in the metastore.</description>
</property>
12、命令&参数:list-databases
命令:
$ bin/sqoop list-databases \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456
参数:与公用参数一样
13、命令&参数:list-tables
命令:
$ bin/sqoop list-tables \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456
参数:与公用参数一样
14、命令&参数:merge
将HDFS中不同目录下面的数据合并在一起并放入指定目录中。
数据环境:
new_staff
1 AAA male
2 BBB male
3 CCC male
4 DDD male
old_staff
1 AAA female
2 CCC female
3 BBB female
6 DDD female
易错提醒:上边数据的列之间的分隔符应该为\t,行与行之间的分割符为\n,如果直接复制,请检查之。
命令:
创建JavaBean:
$ bin/sqoop codegen \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp_conn \
--bindir /home/admin/Desktop/staff \
--class-name EmpConn \
--fields-terminated-by "\t"
开始合并:
$ bin/sqoop merge \
--new-data /test/new/ \
--onto /test/old/ \
--target-dir /test/merged \
--jar-file /home/admin/Desktop/staff/EmpConn.jar \
--class-name Staff \
--merge-key id
结果:
1 AAA MALE
2 BBB MALE
3 CCC MALE
4 DDD MALE
6 DDD FEMALE
参数:
序号 | 参数 | 说明 |
1 | --new-data <path> | HDFS 待合并的数据目录,合并后在新的数据集中保留 |
2 | --onto <path> | HDFS合并后,重复的部分在新的数据集中被覆盖 |
3 | --merge-key <col> | 合并键,一般是主键ID |
4 | --jar-file <file> | 合并时引入的jar包,该jar包是通过Codegen工具生成的jar包 |
5 | --class-name <class> | 对应的表名或对象名,该class类是包含在jar包中的 |
6 | --target-dir <path> | 合并后的数据在HDFS里存放的目录 |
15、命令&参数:metastore
记录了Sqoop job的元数据信息,如果不启动该服务,那么默认job元数据的存储目录为~/.sqoop,可在sqoop-site.xml中修改。
命令:
如:启动sqoop的metastore服务
$ bin/sqoop metastore
参数:
序号 | 参数 | 说明 |
1 | --shutdown | 关闭metastore |
此博文仅供学习参考,如有错误欢迎指正。
上一篇《大数据-sqoop(一)》
下一篇《大数据-sqoop(五)》
希望对大数据相关技术感兴趣的友友们关注一下,大家可以一起交流学习哦~