大数据-sqoop(二)

                                      大数据-sqoop(二)

目录

Sqoop作业介绍及使用

Sqoop常用命令及参数


Sqoop作业介绍及使用

注:Sqoop作业——将事先定义好的数据导入导出任务按照指定流程运行

语法

以下是创建Sqoop作业的语法:

$ sqoop job (generic-args) (job-args)
   [-- [subtool-name] (subtool-args)]

$ sqoop-job (generic-args) (job-args)
   [-- [subtool-name] (subtool-args)]

创建作业(--create)

创建一个名为myjob,可以从RDBMS表的数据导入到HDFS作业。

bin/sqoop job --create myjob2 -- import --connect jdbc:mysql://node03:3306/userdb --username root --password 123456 --table emp --delete-target-dir

该命令创建了一个从db库的employee表导入到HDFS文件的作业。

验证作业 (--list)

‘--list’ 参数是用来验证保存的作业。下面的命令用来验证保存Sqoop作业的列表。

bin/sqoop job --list

它显示了保存作业列表:

检查作业(--show)

‘--show’ 参数用于检查或验证特定的工作,及其详细信息。以下命令和样本输出用来验证一个名为myjob的作业。

$ sqoop job --show myjob

它显示了工具和它们的选择,这是使用在myjob中作业情况。

 执行作业 (--exec)

‘--exec’ 选项用于执行保存的作业。下面的命令用于执行保存的作业称为myjob。

bin/sqoop job --exec myjob2

Sqoop常用命令及参数

常用命令

命令

说明

import

ImportTool

将数据导入到集群

export

ExportTool

将集群数据导出

codegen

CodeGenTool

获取数据库中某张表数据生成Java并打包Jar

create-hive-table

CreateHiveTableTool

创建Hive表

eval

EvalSqlTool

查看SQL执行结果

import-all-tables

ImportAllTablesTool

导入某个数据库下所有表到HDFS中

job

 

JobTool

用来生成一个sqoop的任务,生成后,该任务并不执行,除非使用命令执行该任务。

list-databases

ListDatabasesTool

列出所有数据库名

list-tables

ListTablesTool

列出某个数据库下所有表

merge

MergeTool

将HDFS中不同目录下面的数据合在一起,并存放在指定的目录中

metastore

 

MetastoreTool

记录sqoop job的元数据信息,如果不启动metastore实例,则默认的元数据存储目录为:~/.sqoop,如果要更改存储目录,可以在配置文件sqoop-site.xml中进行更改。

help

HelpTool

打印sqoop帮助信息

version

VersionTool

打印sqoop版本信息

命令&参数详解

刚才列举了一些Sqoop的常用命令,对于不同的命令,有不同的参数,让我们来一一列举说明。

首先来我们来介绍一下公用的参数,所谓公用参数,就是大多数命令都支持的参数。

1、公用参数:数据库连接

序号

参数

说明

1

--connect

连接关系型数据库的URL

2

--connection-manager

指定要使用的连接管理类

3

--driver

JDBC的driver class

4

--help

打印帮助信息

5

--password

连接数据库的密码

6

--username

连接数据库的用户名

7

--verbose

在控制台打印出详细信息

2、公用参数:import

序号

参数

说明

1

--enclosed-by <char>

给字段值前后加上指定的字符

2

--escaped-by <char>

对字段中的双引号加转义符

3

--fields-terminated-by <char>

设定每个字段是以什么符号作为结束,默认为逗号

4

--lines-terminated-by <char>

设定每行记录之间的分隔符,默认是\n

5

--mysql-delimiters

Mysql默认的分隔符设置,字段之间以逗号分隔,行之间以\n分隔,默认转义符是\,字段值以单引号包裹。

6

--optionally-enclosed-by <char>

给带有双引号或单引号的字段值前后加上指定字符。

3、公用参数:export

序号

参数

说明

1

--input-enclosed-by <char>

对字段值前后加上指定字符

2

--input-escaped-by <char>

对含有转移符的字段做转义处理

3

--input-fields-terminated-by <char>

字段之间的分隔符

4

--input-lines-terminated-by <char>

行之间的分隔符

5

--input-optionally-enclosed-by <char>

给带有双引号或单引号的字段前后加上指定字符

4、公用参数:hive

序号

参数

说明

1

--hive-delims-replacement <arg>

用自定义的字符串替换掉数据中的\r\n和\013 \010等字符

2

--hive-drop-import-delims

在导入数据到hive时,去掉数据中的\r\n\013\010这样的字符

3

--map-column-hive <map>

生成hive表时,可以更改生成字段的数据类型

4

--hive-partition-key

创建分区,后面直接跟分区名,分区字段的默认类型为string

5

--hive-partition-value <v>

导入数据时,指定某个分区的值

6

--hive-home <dir>

hive的安装目录,可以通过该参数覆盖之前默认配置的目录

7

--hive-import

将数据从关系数据库中导入到hive表中

8

--hive-overwrite

覆盖掉在hive表中已经存在的数据

9

--create-hive-table

默认是false,即,如果目标表已经存在了,那么创建任务失败。

10

--hive-table

后面接要创建的hive表,默认使用MySQL的表名

11

--table

指定关系数据库的表名

公用参数介绍完之后,我们来按照命令介绍命令对应的特有参数。

5、命令&参数:import

将关系型数据库中的数据导入到HDFS(包括Hive,HBase)中,如果导入的是Hive,那么当Hive中没有对应表时,则自动创建。

1) 命令:

如:导入数据到hive中

$ bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp \
--hive-import

如:增量导入数据到hive中,mode=append

append导入:

$ bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp \
--num-mappers 1 \
--fields-terminated-by "\t" \
--target-dir /user/hive/warehouse/emp \
--check-column id \
--incremental append \
--last-value 3

易错提醒:append不能与--hive-等参数同时使用(Append mode for hive imports is not yet supported. Please remove the parameter --append-mode)

如:增量导入数据到hdfs中,mode=lastmodified

先在mysql中建表并插入几条数据:
mysql> create table company.staff_timestamp(id int(4), name varchar(255), sex varchar(255), last_modified timestamp DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP);
mysql> insert into company.staff_timestamp (id, name, sex) values(1, 'AAA', 'female');
mysql> insert into company.staff_timestamp (id, name, sex) values(2, 'BBB', 'female');
先导入一部分数据:
$ bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp_conn \
--delete-target-dir \
--m 1
再增量导入一部分数据:
mysql> insert into company.staff_timestamp (id, name, sex) values(3, 'CCC', 'female');
$ bin/sqoop import \
--connect jdbc:mysql://node03:3306/userdb \

易错提醒:--incremental lastmodified模式下,last-value指定的值是会包含于增量导入的数据中。易错提醒:使用lastmodified方式导入数据要指定增量数据是要--append(追加)还是要--merge-key(合并)

2) 参数:

序号

参数

说明

1

--append

将数据追加到HDFS中已经存在的DataSet中,如果使用该参数,sqoop会把数据先导入到临时文件目录,再合并。

2

--as-avrodatafile

将数据导入到一个Avro数据文件中

3

--as-sequencefile

将数据导入到一个sequence文件中

4

--as-textfile

将数据导入到一个普通文本文件中

5

--boundary-query <statement>

边界查询,导入的数据为该参数的值(一条sql语句)所执行的结果区间内的数据。

6

--columns <col1, col2, col3>

指定要导入的字段

7

--direct

直接导入模式,使用的是关系数据库自带的导入导出工具,以便加快导入导出过程。

8

--direct-split-size

在使用上面direct直接导入的基础上,对导入的流按字节分块,即达到该阈值就产生一个新的文件

9

--inline-lob-limit

设定大对象数据类型的最大值

10

--m或–num-mappers

启动N个map来并行导入数据,默认4个。

11

--query或--e <statement>

将查询结果的数据导入,使用时必须伴随参--target-dir,--hive-table,如果查询中有where条件,则条件后必须加上$CONDITIONS关键字

12

--split-by <column-name>

按照某一列来切分表的工作单元,不能与--autoreset-to-one-mapper连用(请参考官方文档)

13

--table <table-name>

关系数据库的表名

14

--target-dir <dir>

指定HDFS路径

15

--warehouse-dir <dir>

与14参数不能同时使用,导入数据到HDFS时指定的目录

16

--where

从关系数据库导入数据时的查询条件

17

--z或--compress

允许压缩

18

--compression-codec

指定hadoop压缩编码类,默认为gzip(Use Hadoop codec default gzip)

19

--null-string <null-string>

string类型的列如果null,替换为指定字符串

20

--null-non-string <null-string>

非string类型的列如果null,替换为指定字符串

21

--check-column <col>

作为增量导入判断的列名

22

--incremental <mode>

mode:append或lastmodified

23

--last-value <value>

指定某一个值,用于标记增量导入的位置

6、命令&参数:export

从HDFS(包括Hive和HBase)中奖数据导出到关系型数据库中。

1) 命令:

$ bin/sqoop export \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp_add \
--export-dir /user/company \
--input-fields-terminated-by "\t" \
--num-mappers 1

2) 参数:

序号

参数

说明

1

--direct

利用数据库自带的导入导出工具,以便于提高效率

2

--export-dir <dir>

存放数据的HDFS的源目录

3

-m或--num-mappers <n>

启动N个map来并行导入数据,默认4个

4

--table <table-name>

指定导出到哪个RDBMS中的表

5

--update-key <col-name>

对某一列的字段进行更新操作

6

--update-mode <mode>

updateonly

allowinsert(默认)

7

--input-null-string <null-string>

请参考import该类似参数说明

8

--input-null-non-string <null-string>

请参考import该类似参数说明

9

--staging-table <staging-table-name>

创建一张临时表,用于存放所有事务的结果,然后将所有事务结果一次性导入到目标表中,防止错误。

10

--clear-staging-table

如果第9个参数非空,则可以在导出操作执行前,清空临时事务结果表

7、命令&参数:codegen

将关系型数据库中的表映射为一个Java类,在该类中有各列对应的各个字段。

$ bin/sqoop codegen \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp_add \
--bindir /home/admin/Desktop/staff \
--class-name Staff \
--fields-terminated-by "\t"

序号

参数

说明

1

--bindir <dir>

指定生成的Java文件、编译成的class文件及将生成文件打包为jar的文件输出路径

2

--class-name <name>

设定生成的Java文件指定的名称

3

--outdir <dir>

生成Java文件存放的路径

4

--package-name <name>

包名,如com.z,就会生成com和z两级目录

5

--input-null-non-string <null-str>

在生成的Java文件中,可以将null字符串或者不存在的字符串设置为想要设定的值(例如空字符串)

6

--input-null-string <null-str>

将null字符串替换成想要替换的值(一般与5同时使用)

7

--map-column-java <arg>

数据库字段在生成的Java文件中会映射成各种属性,且默认的数据类型与数据库类型保持对应关系。该参数可以改变默认类型,例如:--map-column-java id=long, name=String

8

--null-non-string <null-str>

在生成Java文件时,可以将不存在或者null的字符串设置为其他值

9

--null-string <null-str>

在生成Java文件时,将null字符串设置为其他值(一般与8同时使用)

10

--table <table-name>

对应关系数据库中的表名,生成的Java文件中的各个属性与该表的各个字段一一对应

 8、命令&参数:create-hive-table

生成与关系数据库表结构对应的hive表结构。

命令:

$ bin/sqoop create-hive-table \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp_add \
--hive-table emp_add

参数:

序号

参数

说明

1

--hive-home <dir>

Hive的安装目录,可以通过该参数覆盖掉默认的Hive目录

2

--hive-overwrite

覆盖掉在Hive表中已经存在的数据

3

--create-hive-table

默认是false,如果目标表已经存在了,那么创建任务会失败

4

--hive-table

后面接要创建的hive表

5

--table

指定关系数据库的表名

9、命令&参数:eval

可以快速的使用SQL语句对关系型数据库进行操作,经常用于在import数据之前,了解一下SQL语句是否正确,数据是否正常,并可以将结果显示在控制台。

命令:

$ bin/sqoop eval \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--query "SELECT * FROM emp"

参数:

序号

参数

说明

1

--query或--e

后跟查询的SQL语句

10、命令&参数:import-all-tables

可以将RDBMS中的所有表导入到HDFS中,每一个表都对应一个HDFS目录。

命令:

$ bin/sqoop import-all-tables \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--warehouse-dir /all_tables

参数:

序号

参数

说明

1

--as-avrodatafile

这些参数的含义均和import对应的含义一致

2

--as-sequencefile

3

--as-textfile

4

--direct

5

--direct-split-size <n>

6

--inline-lob-limit <n>

7

--m或—num-mappers <n>

8

--warehouse-dir <dir>

9

-z或--compress

10

--compression-codec

11、命令&参数:job

用来生成一个sqoop任务,生成后不会立即执行,需要手动执行。

命令:

$ bin/sqoop job \
 --create myjob -- import-all-tables \
 --connect jdbc:mysql://node03:3306/userdb \
 --username root \
 --password 123456
$ bin/sqoop job \
--list
$ bin/sqoop job \
--exec myjob

易错提醒:注意import-all-tables和它左边的--之间有一个空格

易错提醒:如果需要连接metastore,则--meta-connect jdbc:hsqldb:hsql://node03:16000/sqoop

参数:

序号

参数

说明

1

--create <job-id>

创建job参数

2

--delete <job-id>

删除一个job

3

--exec <job-id>

执行一个job

4

--help

显示job帮助

5

--list

显示job列表

6

--meta-connect <jdbc-uri>

用来连接metastore服务

7

--show <job-id>

显示一个job的信息

8

--verbose

打印命令运行时的详细信息

错提醒:在执行一个job时,如果需要手动输入数据库密码,可以做如下优化

<property>
    <name>sqoop.metastore.client.record.password</name>
    <value>true</value>
    <description>If true, allow saved passwords in the metastore.</description>
</property>

12、命令&参数:list-databases

命令:

$ bin/sqoop list-databases \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456

参数:与公用参数一样

13、命令&参数:list-tables

命令:

$ bin/sqoop list-tables \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456

参数:与公用参数一样

14、命令&参数:merge

将HDFS中不同目录下面的数据合并在一起并放入指定目录中。

数据环境:

new_staff
1       AAA     male
2       BBB     male
3       CCC     male
4       DDD     male

old_staff
1       AAA     female
2       CCC     female
3       BBB     female
6       DDD     female

易错提醒:上边数据的列之间的分隔符应该为\t,行与行之间的分割符为\n,如果直接复制,请检查之。

命令:

创建JavaBean:
$ bin/sqoop codegen \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp_conn \
--bindir /home/admin/Desktop/staff \
--class-name EmpConn \
--fields-terminated-by "\t"

开始合并:
$ bin/sqoop merge \
--new-data /test/new/ \
--onto /test/old/ \
--target-dir /test/merged \
--jar-file /home/admin/Desktop/staff/EmpConn.jar \
--class-name Staff \
--merge-key id

结果:
1 AAA MALE
2 BBB MALE
3 CCC MALE
4 DDD MALE
6 DDD FEMALE

参数:

序号

参数

说明

1

--new-data <path>

HDFS 待合并的数据目录,合并后在新的数据集中保留

2

--onto <path>

HDFS合并后,重复的部分在新的数据集中被覆盖

3

--merge-key <col>

合并键,一般是主键ID

4

--jar-file <file>

合并时引入的jar包,该jar包是通过Codegen工具生成的jar包

5

--class-name <class>

对应的表名或对象名,该class类是包含在jar包中的

6

--target-dir <path>

合并后的数据在HDFS里存放的目录

15、命令&参数:metastore

记录了Sqoop job的元数据信息,如果不启动该服务,那么默认job元数据的存储目录为~/.sqoop,可在sqoop-site.xml中修改。

命令:

如:启动sqoop的metastore服务

$ bin/sqoop metastore

参数:

序号

参数

说明

1

--shutdown

关闭metastore


此博文仅供学习参考,如有错误欢迎指正。

上一篇《大数据-sqoop(一)

下一篇《大数据-sqoop(五)

希望对大数据相关技术感兴趣的友友们关注一下,大家可以一起交流学习哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值