大数据-SparkSQL(三)
DataSet概述
DataSet是什么
- DataSet是分布式的数据集合,Dataset提供了强类型支持,也是在RDD的每行数据加了类型约束。
- DataSet是在Spark1.6中添加的新的接口。它集中了RDD的优点(强类型和可以用强大lambda函数)以及使用了Spark SQL优化的执行引擎。
RDD、DataFrame、DataSet的区别
假设RDD中的两行数据长这样
那么DataFrame中的数据长这样
Dataset中的数据长这样
或者长这样(每行数据是个Object)
DataSet包含了DataFrame的功能,Spark2.0中两者统一,DataFrame表示为DataSet[Row],即DataSet的子集。
(1)DataSet可以在编译时检查类型
(2)并且是面向对象的编程接口
DataFrame与DataSet互相转换
- 1、把一个DataFrame转换成DataSet
val dataSet=dataFrame.as[强类型]
- 2、把一个DataSet转换成DataFrame
val dataFrame=dataSet.toDF
- 补充说明
- 可以从dataFrame和dataSet获取得到rdd
val rdd1=dataFrame.rdd
val rdd2=dataSet.rdd
构建DataSet
- 通过sparkSession调用createDataset方法
val ds=spark.createDataset(1 to 10) //scala集合
val ds=spark.createDataset(sc.textFile("/person.txt")) //rdd
- 使用scala集合和rdd调用toDS方法
sc.textFile("/person.txt").toDS
List(1,2,3,4,5).toDS
- 把一个DataFrame转换成DataSet
val dataSet=dataFrame.as[强类型]
- 通过一个DataSet转换生成一个新的DataSet
List(1,2,3,4,5).toDS.map(x=>x*10)
通过IDEA开发程序实现把RDD转换DataFrame
添加依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.3.3</version>
</dependency>
利用反射机制,定义一个样例类,后期直接映射成DataFrame的schema信息
代码开发
package com.kaikeba.sql
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Column, DataFrame, Row, SparkSession}
//todo:利用反射机制实现把rdd转成dataFrame
case class Person(id:String,name:String,age:Int)
object CaseClassSchema {
def main(args: Array[String]): Unit = {
//1、构建SparkSession对象
val spark: SparkSession = SparkSession.builder().appName("CaseClassSchema").master("local[2]").getOrCreate()
//2、获取sparkContext对象
val sc: SparkContext = spark.sparkContext
sc.setLogLevel("warn")
//3、读取文件数据
val data: RDD[Array[String]] = sc.textFile("E:\\person.txt").map(x=>x.split(" "))
//4、定义一个样例类
//5、将rdd与样例类进行关联
val personRDD: RDD[Person] = data.map(x=>Person(x(0),x(1),x(2).toInt))
//6、将rdd转换成dataFrame
//需要手动导入隐式转换
import spark.implicits._
val personDF: DataFrame = personRDD.toDF
//7、对dataFrame进行相应的语法操作
//todo:----------------- DSL风格语法-----------------start
//打印schema
personDF.printSchema()
//展示数据
personDF.show()
//获取第一行数据
val first: Row = personDF.first()
println("first:"+first)
//取出前3位数据
val top3: Array[Row] = personDF.head(3)
top3.foreach(println)
//获取name字段
personDF.select("name").show()
personDF.select($"name").show()
personDF.select(new Column("name")).show()
personDF.select("name","age").show()
//实现age +1
personDF.select($"name",$"age",$"age"+1).show()
//按照age过滤
personDF.filter($"age" >30).show()
val count: Long = personDF.filter($"age" >30).count()
println("count:"+count)
//分组
personDF.groupBy("age").count().show()
personDF.show()
personDF.foreach(row => println(row))
//使用foreach获取每一个row对象中的name字段
personDF.foreach(row =>println(row.getAs[String]("name")))
personDF.foreach(row =>println(row.get(1)))
personDF.foreach(row =>println(row.getString(1)))
personDF.foreach(row =>println(row.getAs[String](1)))
//todo:----------------- DSL风格语法--------------------end
//todo:----------------- SQL风格语法-----------------start
personDF.createTempView("person")
//使用SparkSession调用sql方法统计查询
spark.sql("select * from person").show
spark.sql("select name from person").show
spark.sql("select name,age from person").show
spark.sql("select * from person where age >30").show
spark.sql("select count(*) from person where age >30").show
spark.sql("select age,count(*) from person group by age").show
spark.sql("select age,count(*) as count from person group by age").show
spark.sql("select * from person order by age desc").show
//todo:----------------- SQL风格语法----------------------end
//关闭sparkSession对象
spark.stop()
}
}
通过StructType动态指定Schema
代码开发
package com.kaikeba.sql
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
//todo;通过动态指定dataFrame对应的schema信息将rdd转换成dataFrame
object StructTypeSchema {
def main(args: Array[String]): Unit = {
//1、构建SparkSession对象
val spark: SparkSession = SparkSession.builder().appName("StructTypeSchema").master("local[2]").getOrCreate()
//2、获取sparkContext对象
val sc: SparkContext = spark.sparkContext
sc.setLogLevel("warn")
//3、读取文件数据
val data: RDD[Array[String]] = sc.textFile("E:\\person.txt").map(x=>x.split(" "))
//4、将rdd与Row对象进行关联
val rowRDD: RDD[Row] = data.map(x=>Row(x(0),x(1),x(2).toInt))
//5、指定dataFrame的schema信息
//这里指定的字段个数和类型必须要跟Row对象保持一致
val schema=StructType(
StructField("id",StringType)::
StructField("name",StringType)::
StructField("age",IntegerType)::Nil
)
val dataFrame: DataFrame = spark.createDataFrame(rowRDD,schema)
dataFrame.printSchema()
dataFrame.show()
dataFrame.createTempView("user")
spark.sql("select * from user").show()
spark.stop()
}
}
此博文仅供学习参考,如有错误欢迎指正。
上一篇《大数据-SparkSQL(二)》
下一篇《大数据-SparkSQL(四)》