大数据-SparkSQL(三)

                                大数据-SparkSQL(三)

DataSet概述

DataSet是什么

  • DataSet是分布式的数据集合,Dataset提供了强类型支持,也是在RDD的每行数据加了类型约束。
  • DataSet是在Spark1.6中添加的新的接口。它集中了RDD的优点(强类型和可以用强大lambda函数)以及使用了Spark SQL优化的执行引擎。

RDD、DataFrame、DataSet的区别

假设RDD中的两行数据长这样

那么DataFrame中的数据长这样

Dataset中的数据长这样

或者长这样(每行数据是个Object)

DataSet包含了DataFrame的功能,Spark2.0中两者统一,DataFrame表示为DataSet[Row],即DataSet的子集。
(1)DataSet可以在编译时检查类型
(2)并且是面向对象的编程接口

DataFrame与DataSet互相转换

  • 1、把一个DataFrame转换成DataSet

val dataSet=dataFrame.as[强类型]

  • 2、把一个DataSet转换成DataFrame

val dataFrame=dataSet.toDF

  • 补充说明
  • 可以从dataFrame和dataSet获取得到rdd

val rdd1=dataFrame.rdd

val rdd2=dataSet.rdd

构建DataSet

  • 通过sparkSession调用createDataset方法 
val ds=spark.createDataset(1 to 10) //scala集合
val ds=spark.createDataset(sc.textFile("/person.txt"))  //rdd
  • 使用scala集合和rdd调用toDS方法 
sc.textFile("/person.txt").toDS
List(1,2,3,4,5).toDS
  • 把一个DataFrame转换成DataSet
val dataSet=dataFrame.as[强类型]
  • 通过一个DataSet转换生成一个新的DataSet
List(1,2,3,4,5).toDS.map(x=>x*10)

通过IDEA开发程序实现把RDD转换DataFrame

添加依赖

<dependency>
   <groupId>org.apache.spark</groupId>
   <artifactId>spark-sql_2.11</artifactId>
   <version>2.3.3</version>
</dependency>

利用反射机制,定义一个样例类,后期直接映射成DataFrame的schema信息

代码开发

package com.kaikeba.sql

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Column, DataFrame, Row, SparkSession}

//todo:利用反射机制实现把rdd转成dataFrame
case class Person(id:String,name:String,age:Int)

object CaseClassSchema {
  def main(args: Array[String]): Unit = {

    //1、构建SparkSession对象
    val spark: SparkSession = SparkSession.builder().appName("CaseClassSchema").master("local[2]").getOrCreate()

    //2、获取sparkContext对象
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("warn")

    //3、读取文件数据
    val data: RDD[Array[String]] = sc.textFile("E:\\person.txt").map(x=>x.split(" "))

    //4、定义一个样例类

    //5、将rdd与样例类进行关联
    val personRDD: RDD[Person] = data.map(x=>Person(x(0),x(1),x(2).toInt))

    //6、将rdd转换成dataFrame
    //需要手动导入隐式转换
    import spark.implicits._
    val personDF: DataFrame = personRDD.toDF

    //7、对dataFrame进行相应的语法操作
    //todo:----------------- DSL风格语法-----------------start
    //打印schema
    personDF.printSchema()
    //展示数据
    personDF.show()

    //获取第一行数据
    val first: Row = personDF.first()
    println("first:"+first)

    //取出前3位数据
    val top3: Array[Row] = personDF.head(3)
    top3.foreach(println)

    //获取name字段
    personDF.select("name").show()
    personDF.select($"name").show()
    personDF.select(new Column("name")).show()
    personDF.select("name","age").show()

    //实现age +1
    personDF.select($"name",$"age",$"age"+1).show()

    //按照age过滤
    personDF.filter($"age" >30).show()
    val count: Long = personDF.filter($"age" >30).count()
    println("count:"+count)

    //分组
    personDF.groupBy("age").count().show()

    personDF.show()
    personDF.foreach(row => println(row))

    //使用foreach获取每一个row对象中的name字段
    personDF.foreach(row =>println(row.getAs[String]("name")))
    personDF.foreach(row =>println(row.get(1)))
    personDF.foreach(row =>println(row.getString(1)))
    personDF.foreach(row =>println(row.getAs[String](1)))
    //todo:----------------- DSL风格语法--------------------end


    //todo:----------------- SQL风格语法-----------------start
    personDF.createTempView("person")
    //使用SparkSession调用sql方法统计查询
    spark.sql("select * from person").show
    spark.sql("select name from person").show
    spark.sql("select name,age from person").show
    spark.sql("select * from person where age >30").show
    spark.sql("select count(*) from person where age >30").show
    spark.sql("select age,count(*) from person group by age").show
    spark.sql("select age,count(*) as count from person group by age").show
    spark.sql("select * from person order by age desc").show
    //todo:----------------- SQL风格语法----------------------end

    //关闭sparkSession对象
    spark.stop()
  }
}

通过StructType动态指定Schema

代码开发

package com.kaikeba.sql

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}

//todo;通过动态指定dataFrame对应的schema信息将rdd转换成dataFrame
object StructTypeSchema {

  def main(args: Array[String]): Unit = {
    //1、构建SparkSession对象
    val spark: SparkSession = SparkSession.builder().appName("StructTypeSchema").master("local[2]").getOrCreate()

    //2、获取sparkContext对象
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("warn")

    //3、读取文件数据
    val data: RDD[Array[String]] = sc.textFile("E:\\person.txt").map(x=>x.split(" "))

    //4、将rdd与Row对象进行关联
    val rowRDD: RDD[Row] = data.map(x=>Row(x(0),x(1),x(2).toInt))

    //5、指定dataFrame的schema信息   
    //这里指定的字段个数和类型必须要跟Row对象保持一致
    val schema=StructType(
        StructField("id",StringType)::
        StructField("name",StringType)::
        StructField("age",IntegerType)::Nil
    )

    val dataFrame: DataFrame = spark.createDataFrame(rowRDD,schema)
    dataFrame.printSchema()
    dataFrame.show()

    dataFrame.createTempView("user")
    spark.sql("select * from user").show()


    spark.stop()

  }

}

此博文仅供学习参考,如有错误欢迎指正。

上一篇《大数据-SparkSQL(二)

下一篇《大数据-SparkSQL(四)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值