机器学习
文章平均质量分 93
机器学习基础
菜鸟Octopus
某生鲜领域供应链算法
展开
-
最新版本深度学习框架Mxnet和gluonts报错不配(MXNetError: vector::_M_range_insert)
首先要保证安装了python,并配置好了环境变量;我是利用windows10安装(linux环境下操作更简单)windows安装pip1) 下载安装脚本curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py 2) 运行安装脚本python get-pip.py 这个就...原创 2019-11-28 20:05:26 · 1320 阅读 · 3 评论 -
1-4.时间序列数据建模流程范例
使用Pytorch通常有三种方式构建模型:使用nn.Sequential按层顺序构建模型,继承nn.Module基类构建自定义模型,继承nn.Module基类构建模型并辅助应用模型容器进行封装。此处选择第二种方式构建模型。# 3层lstmreturn yprint(net)Net(原创 2024-07-01 21:15:37 · 1121 阅读 · 0 评论 -
XGboost详解
文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。XGBoost(eXtreme Gradient Boosting)是一个高效的机器学习库,也是一种基于梯度提升决策树(Gradient Boosting Decision Tree)的集成学习算法,专为提升树算法的性能和速度而设计。原创 2024-06-28 10:47:20 · 540 阅读 · 0 评论 -
CatBoost原理介绍
文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。原创 2024-06-28 09:53:49 · 870 阅读 · 0 评论 -
LightGBM 的完整解释 - 最快的梯度提升模型
在寻找最佳特征值来分割树节点时,LightGBM使用特征值直方图,并尝试所有直方图bin值,而不是尝试所有可能的特征值,因此可以减少寻找最佳特征吐出值的时间和计算量。例如,给定下面的年龄特征,将直方图离散特征值放入不同的范围箱中,因此我们可以使用像Age⩽30,Age⩽40,,,,Age⩽100这样的吐槽标准,而不是尝试像Age这样的所有可能的年龄值⩽31、年龄⩽32 等。一般来说,GOSS的主要思想是,在训练下一个集成树之前,我们保留梯度较大的训练实例,并丢弃一些梯度较小的训练实例。原创 2023-10-29 21:23:24 · 5611 阅读 · 0 评论 -
XGboost进行时间序列预测
XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。它在 Gradient Boosting 框架下实现机器学习算法。XGBoost提供并行树提升(也称为GBDT,GBM),可以快速准确地解决许多数据科学问题。相同的代码在主要的分布式环境(Hadoop,SGE,MPI)上运行,并且可以解决数十亿个示例之外的问题。原创 2020-11-19 10:39:06 · 6431 阅读 · 3 评论 -
sklearn Preprocessing 数据预处理功能
scikit-learn`(或`sklearn`)的数据预处理模块提供了一系列用于处理和准备数据的工具。- `StandardScaler`: 将数据进行标准化,使得每个特征的均值为0,方差为1。- `MinMaxScaler`: 将数据缩放到指定的最小值和最大值之间(通常是0到1)。- `RobustScaler`: 对数据进行缩放,可以抵抗异常值的影响。- `RFE`(递归特征消除):逐步选择特征,通过迭代来识别最重要的特征。- `MaxAbsScaler`: 将数据按特征的绝对值最大缩放。原创 2023-08-23 22:15:00 · 1208 阅读 · 0 评论