LightGBM
文章平均质量分 94
1)lightGBM 原理解析
2)lightGBM实战案例
菜鸟Octopus
某生鲜领域供应链算法
展开
-
CatBoost原理介绍
文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。原创 2024-06-28 09:53:49 · 873 阅读 · 0 评论 -
LightGBM算法与XGboost对比
论文地址:《LightGBM: A Highly Efficient Gradient Boosting Decision Tree》:https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf。原创 2024-06-27 19:11:19 · 1226 阅读 · 0 评论 -
为什么LightGBM如此之快
文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。原创 2024-05-30 11:28:25 · 736 阅读 · 0 评论 -
LightGBM 的完整解释 - 最快的梯度提升模型
在寻找最佳特征值来分割树节点时,LightGBM使用特征值直方图,并尝试所有直方图bin值,而不是尝试所有可能的特征值,因此可以减少寻找最佳特征吐出值的时间和计算量。例如,给定下面的年龄特征,将直方图离散特征值放入不同的范围箱中,因此我们可以使用像Age⩽30,Age⩽40,,,,Age⩽100这样的吐槽标准,而不是尝试像Age这样的所有可能的年龄值⩽31、年龄⩽32 等。一般来说,GOSS的主要思想是,在训练下一个集成树之前,我们保留梯度较大的训练实例,并丢弃一些梯度较小的训练实例。原创 2023-10-29 21:23:24 · 5628 阅读 · 0 评论