缘由
上周参加的某大型国企的宣讲会和笔试,这是笔试题。无论是什么方向的都会需要考这套题,所以与it没有太大关系。有点类似于行测。
第一题
2月28日出生和2月29日出生的人的比例是多少?2012年2月28日和2012年2月29日出生的人的比例是多少?
A. 1:1和1:1
B. 4:1和1:1
C. 1:1和4:1
D. 4:1和4:1
标准解答
和我的说法一样
我的解答
显然2月29日是每四年出现一次。所以是4:1。而2012年2月28日和2012年2月29日,这个是已经固定的了。可以视为平常日子里面的任意两天。所以出生孩子的比例应该是1:1
第二题
某连锁企业在10个城市共有100家专卖店,每个城市的专卖店数量都不同。如果专卖店数量排名第5多的城市有12家专卖店,那么专卖店数量排名最后的城市,最多有几家专卖店?
A. 2
B. 3
C. 4
D. 5
标准解答
本题选择C。这是一道最值问题,可采用方程法,设专卖店数量排名最后的城市最多有x家专卖店,要使得专卖店数量排名最后的城市的专卖店的数量最多,则排名前5的城市的专卖店数量应尽量少,分别为16,15,14,13,12,而排名后5的城市的专卖店数量为X+4,x+3,x+2,x+1,x,则根据题意得:16+15+14+13+12+x+x+1+x+2+x+3+x+4=100,解得x=4,因此答案选择C选项。
我的解答
根据第五多的城市有12家。那么第四多的城市至少是13家。以此类推。我们需要知道最后一个城市最多有多少家。那么我们就让前面9个城市的专卖店的店数最少。前1到5年各是16到12。100-(16+15+14+13+12)=30,而后6到10是总共30家。 如果第10家是x,第9家也必须必第10家多一个,才能保证第10家最多(此时符合题意)。5x+1+2+3+4=30。固得x=4。
1 2 3 4 5 6 7 8 9 10
16 15 14 13 12 x+4 x+3 x+2 x+1 x
第三题
烧杯中装了100克浓度为10%的盐水,每次向该烧杯中加入不超过14克浓度为50%的盐水,问最少加多少次之后,烧杯中的盐水浓度能达到25%?(假设烧杯中盐水不会溢出)
A.6
B. 5
C. 4
D.3
标准解答
假设最少加入M次,根据溶液混合前与混合后溶质的量保持不变,可得:100×10%+14M×50%≥(100+14M)×25%,解得M≥30/7,因此最少加入5次。
我的解答
设为x次。总共加入的盐:x*14*0.5。杯中有100*0.1。而水呢?加入的水也是x*14*0.5,杯中有水:100*0.9。
(x*14*0.5+100*0.1)/( x*14*0.5+100*0.9)=0.25
求出x=2.38。没有算出答案。看了标准答案之后再说吧
感悟:上面的计算错误在于浓度的计算。应该是溶质除以溶质加溶液的质量。
(x*14*0.5+100*0.1)/( x*14+100)=0.25
X=4.28所以要五次。
第四题
在一本300 页的书中,数字“1”在书中出现了多少次?
标准解答
与我的解法类似。
我的解答
首先100-199是肯定出现了100个1了(百位数)。下面的难点在于0到99。那么10到19。只算十位的话有是10个1。而1、11、21、31、41、51、61、71、81、91只看个位的话只有9个(明明是十个)。所以我觉得0到99应该19个。3个19再加上百位的100到199为接近于答案的160。但是我好像忽略了一个。忽略的后来找到了。
第五题
4个袋子,15个球,每个袋子至少放一个球,而且袋子中的球数量不能重复,有多少种方式?
A.4
B.5
C.6
D.7
标准解答
也就是穷举,每个袋子的个数:
1,2,3,9
1,2,4,8
1,2,5,7
1,3,4,7
1,3,5,6
2,3,4,6
我的解答
这道题我就已经不太知道怎么做了。我就穷举了一下。
因为每个袋子至少放一个。那么假设每个袋子已经被放了一个,那么这个问题就是成了每个袋子里放11个的问题。
11 0 0 0
10 0 0 1
8 0 1 2
7 1 2 3
我只能穷举出这四种。
感悟
是微软的校招笔试题,太不小心了,居然没有穷举完。
第六场
小组赛,每个小组有5支队伍,互相之间打单循环赛,胜一场得3分,平一场得1分,输一遍不得分,小组前三名出线,平分抽签,一个队最少拿几分就有理论上的出线希望?
标准解答
出线需要淘汰两支队伍。
理论上只要两分就有抽签出线的希望:
假设五支队伍为A、B、C、D、E
A、B、C三支队伍相互都是平局,他们全都负于D队及E队。这样ABC三队都是两分,平分抽签,就有了理论上的出线希望。
只得一分是不可能出线的,因为负了三场,则有三支队已经至少三分了,只取前三名,得一分不可能出线。
我的解答
当时考场上脑子一团浆糊,现在好点了。我们从答案给出的4个选项来推测。
一分就是该队平1输3,那么赢他的3个队都已经累积3分,已经出线了,所以不是一分。
两分就是平二输二,那么,作为第三名,他平了第四名和第五名,输给了前第一名和第二名。但是第四名和第五名之间的比赛如果都平了,就是有3个队伍是2分。如果第五名或者第四名谁赢了的话,那么就是已经是4分了。所以占了出线的名额。
如此看来三分就有很大的可能了。三分就是平三输一或者赢一输三。如果是平三输一的话,就算只输给了第一名。那么第五名和第四名只要他们之间的比赛平了,就最多只能得到2分。(其中一份来自和第三名的比赛平了)
感悟
我居然忽略了评分就抽签
第七场
本届世界杯决赛有有六名乒乓球选手进行单打循环赛,比赛在三个台上同时进行,比赛时间是每星期六的下午,每人每周只能而且必须参加一场比赛,因而比赛需要进行五周。已知在第一周的星期六王励勤和张继科对垒;第二周马琳与马龙对垒;第三周王皓和王励勤对垒;第四周马龙和张继科对垒。当然,在上述这些对垒的同时,另外还有两台比赛,但这两台比赛是谁和谁对垒,我们不清楚。问:上面未提到过名字的郝帅在第五周同谁进行了比赛?
标准解答
先考虑王励勤在各周都是同谁进行了比赛,已知在第一周王励勤同张继科,第三周王励勤同王皓进行比赛,因而王励勤同马龙、马琳、郝帅的比赛只能分别在第二、四、五周了,但由于第二周马龙同马琳对垒,因而这一周王励勤就只可能同郝帅比赛了,同理可推得在第四周王励勤同马琳,第五周王励勤同马龙对垒,其次考虑马龙在各周都是同谁进行了比赛,用同样的分析方法可推知第一周马龙同王皓,第二周马龙同马琳,第三周马龙同郝帅,第四周马龙同张继科,第五周马龙同王励勤对垒,有了这个结果下面的问题就迎刃而解了,由于每周都有三台比赛,知道了其中两台选手,另一台的两位选手自然就不难推出,由此推得在第五周郝帅同张继科进行了比赛
我的解答
该题的名字比较容易扰乱思维,所以将名字换成A、B、C、D、E、F。对应关系如下:
A B C D E F
王励勤 张继科 马琳 马龙 王浩 郝帅
已知
第一周:A-B C D E F F- C、E-D。因为C-D在第二周举行
第二周 :C-D AB E F A-F、B-E因为A-B在第一周打、E-A在第三周打
第三周:E-A B C D F F-D、C-B
第四周:D-B A C E F F-E、A-C必须在第二周打。
第五周:F-? 只剩下B
所以选张继科。
感悟
答案应该还没有我的思路清晰
第八场
设想你有一罐红漆,一罐蓝漆,以及大量同样大小的立方体木块。你打算把这些立方体的每一面漆成单一的红色或单一的蓝色。例如,你会把一块立方体完全漆成红色。第二块,你会决定漆成3面红3面蓝。第三块或许也是3面红3面蓝,但是各面的颜色与 第二块相应各面的颜色不完全相同。
按照这种做法,你能漆成多少互不相同的立方体? 如果一块立方体经过翻转,它各面的颜色与另一块立方体的相应各面相同,这两块立方体就被认为是相同的。
标准解答
我的解答
穷举所有的情况,注意穷举的时候的规律。
感悟
我认为答案错了。但是因为3面红3面蓝,其实只有一个。
第九题
100个人回答五道试题,有81人答对第一题,91人答对第二题,85人答对第三题,79人答对第四题,74人答对第五题,答对三道题或三道题以上的人算及格, 那么,在这100人中,至少有( )人及格。
标准解答
问至少有多少人及格,那就是说不及格的人数最多时及格的人数最少.100人回答5道题,相当于做500道题,共答对的题目数量有:81+91+85+79+74=410(道),则出错的数量有:500-410=90(道),错3道以上就不及格,每人错3道时不及格人数最多,90÷3=30(人),则及格的人数是:100-30=70(人)。如果每人错五道,则为不及格的人最少。90÷5=18(人)。将会有82人及格,这是最多的情况。
我的解答
我没有想出完整的推理的过程,但是我发现如果答对第五题的74个人,同时也答对了第一、二、三、四题。这种的情况完全可以出现,但是这好像不是最少的情况。
感悟
错得一塌糊涂
第十题
某公司针对A、B、C三种岗位招聘了35人,其中只能上B岗位的人数等于只能上C岗位人数的2倍.而只能上A岗位的人数比能兼职别的岗位的人多1人,在只能上一个岗位的人群中,有一半还能上A岗位,则招聘的35人中能兼职别的岗位的有多少人.
A.10
B.11
C.12
D.13
标准解答
根据题干,设能兼职的有X人,则只能上A岗位的有X+1人,又设只能上B岗的有Y人,则只能上C岗的有2Y人,由此即可得出两个关于X、Y的二元一次方程:X+1+Y+2Y+X=35,X+1=Y+2Y;利用代入消元法消去未知数Y,即可求得X的值.
解答:解:设能兼职的有X人,则只能上A岗位的有X+1人,又设只能上C岗的有Y人,则只能上B岗的有2Y人,根据题意可得方程:
X+1+Y+2Y+X=35,
X+1=Y+2Y,
整理可得:X+3Y+1=35,①;
3Y=X+1,②;
把②代入①可得:
3X=33,则X=11,
答:招聘的35人中能兼职别的岗位的有11人.
故答案为:11.
我的解答
设A、B、C、M分别代表只能担任A、B、C岗位和能够兼职的人。所以可以根据答案倒推。
A B+C M
11 共11 10 不符合题意,因为加起来不是35
12 共12 11 符合题意加起来35.
第十一题
A、B、C、D、E是5个不同的整数,两两相加的和共有8个不同的数值,分别是17、25、28、31、34、39、42、45,则这5个数中能被6整除的有几个?
A.0
B.1
C.2
D.3
标准解答
【正确答案】C
方法一:设五个整数从小到大依次是A、B、C、D、E,五个数两两相加的和应有10个,分别为
A+B,A+C,A+D,A+E,
B+C,B+D,B+E,
C+D,C+E,
D+E;
由于“两两相加的和共有8个不同的数值”,故定有两个数值重复出现过。
分析可知,A+B和A+C分别是数值最小的两个数,即A+B=17,A+C=25;
C+E和D+E分别是数值最大的两个数,即C+E=42,D+E=45。
并且这四个数字是不能重复的,即重复出现的数字一定是在28、31、34、39
五个整数两两相加的和一定满足能被4整除(每个数都加了四遍)。
而题目中两两相加得出的8个不同数值的和为261,除以4余数为1,那么重复出现的两个数的和除以4一定余3。
28、31、34、39中只有28+31=59与28+39=67两个数除以4,余3,故数字28一定是重复出现的数字。
由于28是第三大的数字,可推知B+C=A+D=28,联立A+C=25,可知B-A=3,再联立A+B=17,可知A=7,B=10。同法可依次解得C=18,D=21,E=24。五个数字中能被6整除的有两个,故选择C选项。
方法二:五个数字两两相加,得出的八个和中有5个是奇数,有3个是偶数,可以推论这五个数字中奇数个数必为两个或者三个。(如果只有一个奇数,那么加和最多只能出现4个奇数;如果有4个奇数,那么加和最多只能出现4个奇数;如果有5个奇数,那么加和不可能出现奇数)即五个数字中要么有三个奇数,要么有三个偶数。只有同奇同偶数字相加时,和才能为偶数,故28、34、42三个数必为三个同奇同偶数字两两相加的和。设三个同奇同偶数字分别A、B、C,则有2×(A+B+C)=28+34+42,即A+B+C=52,从而可以分别解出三个同奇同偶数字分别为52-28=24,52-34=18,52-42=10。三个数字中有两个数字能被6整除,剩余两数定为奇数,定不能被6整除,故能被6整除的数字共有2个。故应选择C选项。
方法三:设五个整数从小到大依次是A、B、C、D、E,五个数两两相加的和应有10个,分别为
A+B,A+C,A+D,A+E,
B+C,B+D,B+E,
C+D,C+E,
D+E;
分析可知,A+B和A+C分别是数值最小的两个数,即A+B=17,A+C=25;
C+E和D+E分别是数值最大的两个数,即C+E=42,D+E=45。
数值28可能为A+D的和,也可能为B+C的和;
数值39可能为B+E的和,也可能为C+D的和。
可推断5个数的奇偶性,
当A为奇数时,奇偶性如下: 当A为偶数时,奇偶性如下
A B C D E A B CD E
奇 偶 偶 奇 偶 偶 奇 奇 偶 奇
经观察可知,无论何种情况B与E必定同奇或同偶,即B+E≠39。故C+D=39。
联立C+E=42,D+E=45,C+D=39,易求E=24,
从而可分别求出A=7,B=10,C=18,D=21,E=24
有C、E两个值可被6整除,故应选择C选项。
我的解答
不仅解题思路错了,连标准答案都不想看懂了。
将能被6整除的数举例出来:6、12、18、24、36、42,再多就大于题中两两相加的数字了
17 25 28 31 34 39 42 45
如果有6 11 19 22 25 28 33 36 39 不行
如果有12 5 13 2619 22 27 30 33 不行
显然这样做不出来,因为6只和其中4个数相加,而不是8个。但是我不知道是哪四个。
后来又想到一种解法,那就是两个能被六整除的人的和肯定也是能被六整除的。这里面只有一个42。42/6=7
所以可能的组合就是
6 12 24
6 36
再考察两组最大的数,如果36的话,那么36与别的数相加时,必定会产生4个比36大的数,但是实际只有3个比36大的数。
如果是24的话,题中应该会有24+12=36。但是又没有,所以我觉得可以排除C、D选项。那么就只有A、B选项了。
假设有一个,那么范围也就是在6、12、18、24、36、42中的一个。42、36、6都排除,42和36、6排除的原因和上面类似(如果36的话,那么36与别的数相加时,必定会产生4个比36大的数,但是实际只有3个比36大的数)。那么就只剩下12、18、24了。接着我就判断不了。
第十二题
一群猴子采摘水蜜桃。猴王不在的时候,一个大猴子1时可摘15kg,一个小猴子1时可采11kg;猴王在监督的时候,大猴子的1/5和小猴子的1/5必须停止采摘,去伺候猴王。有一天,采了8小时,其中第一小时和最后一小时有猴王在场监督,结果共采3382kg的水蜜桃,在这个猴群里共几只大猴子?
A.10
B.13
C.14
D.15
标准解答
时间:8小时
猴王在:2小时
猴王在时效率:80%
设每小时采xkg水蜜桃
6x+80%*2x=3382
x=445
猴王不在时,每小时445kg
设大的y只,小的z只
11z+15y=445
正整数解为:大4小35
大15小20
大26小5
我的解答
可以列出算式,然后猴子的个数必为整数。我列的算式如下图。
第十三题
A与B两山村之间的路不是上坡就是下坡,相距60千米。邮递员骑车从A村到B村,用了3.5小时;再沿原路返回,用了4.5小时。已知上坡时邮递员的车速是12千米/小时,则下坡时邮递员的车速是?
A、10千米/小时 B、12千米/小时 C、14千米/小时 D、20千米/小时
标准解答
D。解析:方法一,如下图:
可以看图知道无论道路怎么样去是上坡的回来必是下坡,反之,去是下坡的回来必是上坡,从而知道一个来回上坡、下坡均有60千米,又由题意可知往返共花了3.5+4.5=8小时故上坡用时60÷12=5小时,下坡用时8-5=3小时,下坡速度就是60÷3=20千米/时。
方法二,共120千米花了8小时,平均每小时120/8=15千米每小时,下坡一定比平均速度大,故选比15大的D选项。
我的解答
显然下坡速度要快于上坡速度嘛,所以就选C或者D。然后再假设是C,带入公式进入计算就会发现,算出来的结果是负数。
假设从A到B的时候,上坡时间t1、下坡时间t2
t1*12+14*t2 = 60
t1+t2=3.5
两个方程解两个未知数,t1会为负数(如果我没算错的话),所以选D。
感悟:原来这些题根本不需要多少时间,如果你会做的吧。
第十四题
两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?
标准解答
123/9=13……6
所以第一个报6
然后不管对方报几,你就报9-几
比如,对方报1,你就报8
对方报5,你就报4。这样必赢
我的解答
做不出来。
感悟
标准答案解的太秒了。题中有个暗示就是只能报1-8的数。那么对方无论报多少都可以报与9的差,这样就不怕对方乱报了。