https://leetcode-cn.com/problems/longest-increasing-path-in-a-matrix/
给定一个整数矩阵,找出最长递增路径的长度。
对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。
示例 1:
输入: nums =
[
[9,9,4],
[6,6,8],
[2,1,1]
]
输出: 4
解释: 最长递增路径为 [1, 2, 6, 9]。
示例 2:
输入: nums =
[
[3,4,5],
[3,2,6],
[2,2,1]
]
输出: 4
解释: 最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。
方法一:DFS深度优先遍历,会超时
class Solution {
int maxvalue=0;
public int longestIncreasingPath(int[][] matrix) {
if(matrix==null||matrix.length==0||matrix[0].length==0){
return 0;
}
int res=0;
int row=matrix.length;
int col=matrix[0].length;
for(int i=0;i<row;i++){
for(int j=0;j<col;j++){
//每次最大长度初值复位0
maxvalue=0;
res=Math.max(res,DFS(matrix,i,j,row,col,0));
}
}
return res+1;
}
public int DFS(int[][] matrix,int i,int j,int row,int col,int res){
//当四周的点都不满足递增时DFS到底,返回当前长度
if(!find(matrix,i,j,row,col)){
maxvalue=Math.max(maxvalue,res);
return maxvalue;
}
//上方点递增,递归DFS,长度加1
if(i-1>=0&&matrix[i-1][j]>matrix[i][j]){
DFS(matrix,i-1,j,row,col,res+1);
}
//下方点递增,递归DFS,长度加1
if(i+1<row&&matrix[i+1][j]>matrix[i][j]){
DFS(matrix,i+1,j,row,col,res+1);
}
//左侧点递增,递归DFS,长度加1
if(j-1>=0&&matrix[i][j-1]>matrix[i][j]){
DFS(matrix,i,j-1,row,col,res+1);
}
//右侧点递增,递归DFS,长度加1
if(j+1<col&&matrix[i][j+1]>matrix[i][j]){
DFS(matrix,i,j+1,row,col,res+1);
}
//返回当前最大长度
return maxvalue;
}
//判断四周点是否满足递增
public boolean find(int[][] matrix,int i,int j,int row,int col){
if(i-1>=0&&matrix[i-1][j]>matrix[i][j]){
return true;
}
if(i+1<row&&matrix[i+1][j]>matrix[i][j]){
return true;
}
if(j-1>=0&&matrix[i][j-1]>matrix[i][j]){
return true;
}
if(j+1<col&&matrix[i][j+1]>matrix[i][j]){
return true;
}
return false;
}
}
方法二:DFS+记忆化搜索
class Solution {
public int longestIncreasingPath(int[][] matrix) {
if(matrix==null||matrix.length==0||matrix[0].length==0){
return 0;
}
int row=matrix.length;
int col=matrix[0].length;
//dp[i][j]为以(i,j)为起点的最长递增路径长度,实现记忆化
int[][]dp=new int[row][col];
int res=0;
for(int i=0;i<row;i++){
for(int j=0;j<col;j++){
//查询每个点为起点的最大长度
res=Math.max(res,DFS(matrix,i,j,Integer.MIN_VALUE,dp));
}
}
return res;
}
public int DFS(int[][] matrix,int i,int j,int cur,int[][]dp){
int row=matrix.length;
int col=matrix[0].length;
//当该点不满足递增时返回
if(i<0||i>=row||j<0||j>=col||matrix[i][j]<=cur){
return 0;
}
//之前已求过的可以直接返回
if(dp[i][j]!=0){
return dp[i][j];
}
//每个点为起点的初始长度0
int max=0;
//分别求上下左右四个点
max=Math.max(max,DFS(matrix,i-1,j,matrix[i][j],dp));
max=Math.max(max,DFS(matrix,i+1,j,matrix[i][j],dp));
max=Math.max(max,DFS(matrix,i,j-1,matrix[i][j],dp));
max=Math.max(max,DFS(matrix,i,j+1,matrix[i][j],dp));
//求解完当前点最大长度将其赋值给dp
dp[i][j]=max+1;
//返回最大值
return max+1;
}
}