-
交叉熵代价函数
- 激活函数sigmoid函数:
- 激活函数求导 :
- 交叉熵代价函数:
其中C 表示代价函数,x表示样本,y表示实际值,a 表示输出值,n 表示样本的总数。
-
- 上述的两个公式中可以发现权值和偏置值的调制与 无关,另外,梯度公式中的 表示输出值与实际值的误差。所以当误差越大时,梯度就越大,参数 w 和 b 的调整就越快,训练的速度也就越快。
- 如果输出神经元是线性的,那么二次代价函数就是一种合适的选择。如果输出神经元是 S 型函数,那么比较适合用交叉熵代价函数。
-
对数似然代价函数
- 对数似然函数常用来作为softmax回归的代价函数,如果输出层神经元是sigmoid函数,可以采用交叉熵代价函数。而深度学习中更普遍的做法是将softmax最为最后一层,此时常用的代价函数是对数似然代价函数。
- 对数似然代价函数与softmax的组合和交叉熵与sigmoid函数的组合非常相似。对数似然代价函数在二分类时可以化简为交叉熵代价函数的形式。
- 在TensorFlow中用:
tf.nn.sigmoid_cross_entropy_with_logits() 来表示跟sigmoid搭配使用的交叉熵
tf.nn.softmax_cross_entropy_with_logits() 来表示跟softmax 搭配使用的交叉熵
TensorFlow 交叉熵代价函数
最新推荐文章于 2021-03-13 16:49:54 发布