TensorFlow 交叉熵代价函数

  • 交叉熵代价函数

  • 激活函数sigmoid函数:  \theta(z)=\frac{1}{1+e^{-z}} 
     
  • 激活函数求导 :           {\theta}'(z)=\theta(z)*(1-\theta(z))
     
  • 交叉熵代价函数:
    C =-\frac{1}{n}\sum_{x=1}^n[y*lna+(1-y)ln(1-a)]
    其中C 表示代价函数,x表示样本,y表示实际值,a 表示输出值,n 表示样本的总数。

    a=\theta(z)        z=\sum w_j*x_j+b       
     
  •  \frac{\partial C}{\partial w_j}=-\frac{1}{n}\sum_x^n(\frac{y}{\partial(z)}-\frac{1-y}{1-\partial(z)})\frac{\partial \theta}{\partial w_j}=\frac{1}{n}\sum_x^nx_j(\theta(z)-y)
     
  • \frac{\partial C}{\partial b}=\frac{1}{n}\sum(\theta(z)-y)
     
  • 上述的两个公式中可以发现权值和偏置值的调制与 {\theta}'(z) 无关,另外,梯度公式中的  \theta(z)-y 表示输出值与实际值的误差。所以当误差越大时,梯度就越大,参数 w 和 b 的调整就越快,训练的速度也就越快。
  • 如果输出神经元是线性的,那么二次代价函数就是一种合适的选择。如果输出神经元是 S 型函数,那么比较适合用交叉熵代价函数。
     
  • 对数似然代价函数
     

  • 对数似然函数常用来作为softmax回归的代价函数,如果输出层神经元是sigmoid函数,可以采用交叉熵代价函数。而深度学习中更普遍的做法是将softmax最为最后一层,此时常用的代价函数是对数似然代价函数。
     
  • 对数似然代价函数与softmax的组合和交叉熵与sigmoid函数的组合非常相似。对数似然代价函数在二分类时可以化简为交叉熵代价函数的形式。
     
  • 在TensorFlow中用:

    tf.nn.sigmoid_cross_entropy_with_logits() 来表示跟sigmoid搭配使用的交叉熵
    tf.nn.softmax_cross_entropy_with_logits() 来表示跟softmax  搭配使用的交叉熵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值