TensorFlow 中的交叉熵(Cross Entropy)

本文介绍了如何使用TensorFlow实现交叉熵损失函数,并解释了tf.reduce_sum()和tf.log()两个关键函数的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TensorFlow 中的交叉熵(Cross Entropy)

与 softmax 一样,TensorFlow 也有一个函数可以方便地帮我们实现交叉熵。

Cross entropy loss function 交叉熵损失函数

Cross entropy loss function 交叉熵损失函数

让我们把你从视频当中学到的知识,在 TensorFlow 中来创建一个交叉熵函数。创建一个交叉熵函数,你需要用到这两个新的函数:

Reduce Sum

x = tf.reduce_sum([1, 2, 3, 4, 5])  # 15

tf.reduce_sum() 函数输入一个序列,返回他们的和

Natural Log

x = tf.log(100)  # 4.60517

tf.log() 所做跟你所想的一样,它返回所输入值的自然对数。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ncst

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值