【实战AI】mac 本地部署 Dify 实现智能体

下载 Ollama 访问 Ollama 下载页,下载对应系统 Ollama 客户端。或者参考文章【实战AI】macbook M1 本地ollama运行deepseek_m1 max可以跑deepseek吗-CSDN博客

dify 安装

开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力,轻松构建和运营生成式 AI 原生应用。

https://cloud.dify.ai/app

前提条件是,本地安装好了docker 

 1. github 源码下载:

git clone https://github.com/langgenius/dify.git

2. 配置dify

执行   cd /dify/docker<

### 部署和配置 Deepseek 和 Dify #### 准备工作 为了确保顺利部署,确认本地环境满足最低硬件需求,并安装必要的依赖软件。对于 Mac 用户来说,特别需要注意的是根据自身的硬件条件来选择适合的 DeepSeek 模型版本[^2]。 #### 下载与安装 按照官方文档指示获取最新版的 Dify 及其配套工具链。针对 macOS 系统,可以通过 Homebrew 或者直接下载二进制文件的方式完成安装过程。之后设置好相应的环境变量以便后续调用这些工具[^1]。 #### 设置模型存储路径 创建用于保存预训练模型和其他资源的目标目录 `/your/custom/path` ,并将此位置替换为具体的绝对路径,例如 `/Users/yourusername/models` 。这一步骤至关重要,因为所有后续操作都将基于这个自定义的位置展开。 #### 获取 DeepSeek 模型 依据计算机性能挑选合适大小的 DeepSeek 版本——一般而言,较低端设备推荐采用 `deepseek-r1:1.5b` 而高性能机器则可以考虑更大的选项比如 `deepseek-r1:32b` 。接着利用命令行界面执行如下指令以加载选定型号: ```bash ollama run deepseek-r1:1.5b ``` 上述命令会自动处理模型文件的拉取以及初始化流程。 #### 整合至 Dify 平台 一旦完成了前面几步准备工作以后,就可以着手把已经就绪的服务接入到 Dify 开发框架当中去了。遵循项目仓库里的指引逐步实现两者的对接,从而建立起一套完整的解决方案栈,在保障信息安全的同时享受高效便捷的人工智能辅助功能。 #### 测试验证 最后别忘了进行全面的功能测试,确保各个组件之间能够正常协作运行。如果遇到任何问题,请参照官方支持渠道寻求帮助或者查阅常见错误排查手册获得指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方鲤鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值