【实战AI】利用deepseek 在mac本地部署搭建个人知识库

之前的文章中实现了本地通过ollma 部署deepseek R1:14b 模型,这里我想继续实现个人知识库,方便自己文档,数据的检索;

下载anythingLLM

地址:

https://anythingllm.com/desktop

下载安装即可;

下载嵌入 文本处理 程序nomic-embed-text

nomic-embed-text

本地终端执行

下载成功

### DeepSeek 本地部署教程 #### 准备环境 为了成功完成DeepSeek本地部署,需准备一台性能良好的计算机或服务器。尽管有实例表明老旧笔记本也能运行[^2],但推荐配置更高的设备以确保稳定性和效率。 #### 安装依赖项 安装必要的软件包和工具集对于顺利部署至关重要。通常这包括但不限于Python解释器及其开发文件、pip包管理工具以及Git版本控制系统。具体命令如下所示: ```bash sudo apt-get update && sudo apt-get install python3-pip git -y ``` #### 获取源码仓库 利用Git克隆官方提供的GitHub项目地址到本地机器上。这样可以获得最新的代码库副本用于后续操作。 ```bash git clone https://github.com/deepseek-ai/deploy.git deepseek_deploy cd deepseek_deploy ``` #### 配置环境变量 创建`.env`文件来定义应用程序所需的各项参数设置,比如数据库连接字符串、密钥等敏感信息不应硬编码在程序内部而是通过这种方式传递进去。 ```plaintext # .env example content DB_HOST=localhost DB_PORT=5432 SECRET_KEY=mysecretkeyvaluehere... ``` #### 启动服务进程 按照官方文档指示执行启动脚本或者Docker容器镜像的方式激活后台守护线程监听HTTP请求接口提供对外交互能力。 ```bash docker-compose up --build -d ``` 如果一切正常的话,在浏览器里输入对应的IP地址加端口号就能看到Web界面了。 ### 构建个人知识库 #### 数据导入流程 收集整理好想要存入的知识条目之后,可以通过CSV/Excel表格形式批量上传至平台内预设的数据表单结构之中;亦或是编写自定义爬虫抓取网络上的公开资源作为初始素材填充进来。 #### 文档分类体系 建立合理的主题目录树形架构有助于提高检索命中率降低冗余度。例如按照行业领域划分子节点标签如“自然语言处理”、“图像识别技术”,再往下细分更具体的算法原理介绍文章链接列表等等。 #### 权限控制机制 针对不同用户群体设定差异化的浏览权重等级制度保障私密信息安全的同时鼓励积极贡献优质原创内容形成良性循环生态社区氛围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方鲤鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值