#include <iostream>
#include "Possion.h"
#include <vector>
using namespace std;
typedef float (*func)(const float&, const float&, const float&, const float&, const float&, const float&, const float&, const int&, const int&);
void RungeKutta_2D(const float& t_init,const float& t_interval, const float& t_final, const float& x_init, const float& y_init, vector<float>& vec_t, vector<float>& vec_x, vector<float>& vec_y, func funcp1, func funcp2,
const float& lambda, const float& aerfa, const float& beita,const float& sourcespeed, const int& filesize, const int& leaverate){
// curr;
float t_cur = t_init;
float x_cur = x_init;
float y_cur = y_init;
// next;
float x_next, y_next, t_next;
x_next = x_init;
y_next = y_init;
t_next = t_init;
// container init;
vec_t.push_back(t_init);
vec_x.push_back(x_init);
vec_y.push_back(y_init);
// define the 4 value;
float k1x, k2x, k3x, k4x;
float k1y, k2y, k3y, k4y;
// loop to the final;
while(1){
if(t_next <= t_final){
//const float &lambda, const float& aerfa, const float& beita, const float& sourcespeed, const float& t, const float& x, const float& y, const int& filesize
// cal k1,k2,k3,k4;
k1x = funcp1(lambda, aerfa, beita, sourcespeed, t_cur, x_cur, y_cur, filesize, leaverate);
k1y = funcp2(lambda, aerfa, beita, sourcespeed, t_cur, x_cur, y_cur, filesize, leaverate);
k2x = funcp1(lambda, aerfa, beita, sourcespeed, t_cur + (t_interval / 2), x_cur + (t_interval / 2) * k1x, y_cur + (t_interval / 2) * k1y, filesize, leaverate);
k2y = funcp2(lambda, aerfa, beita, sourcespeed, t_cur + (t_interval / 2), x_cur + (t_interval / 2) * k1x, y_cur + (t_interval / 2) * k1y, filesize, leaverate);
k3x = funcp1(lambda, aerfa, beita, sourcespeed, t_cur + (t_interval / 2), x_cur + (t_interval / 2) * k2x, y_cur + (t_interval / 2) * k2y, filesize, leaverate);
k3y = funcp2(lambda, aerfa, beita, sourcespeed, t_cur + (t_interval / 2), x_cur + (t_interval / 2) * k2x, y_cur + (t_interval / 2) * k2y, filesize, leaverate);
k4x = funcp1(lambda, aerfa, beita, sourcespeed, t_cur + t_interval, x_cur + t_interval * k3x, y_cur + t_interval * k3y, filesize, leaverate);
k4y = funcp2(lambda, aerfa, beita, sourcespeed, t_cur + t_interval, x_cur + t_interval * k3x, y_cur + t_interval * k3y, filesize, leaverate);
// next;
x_next = x_cur + (t_interval / 6) * (k1x + 2 * k2x + 2 * k3x + k4x);
y_next = x_cur + (t_interval / 6) * (k1y + 2 * k2y + 2 * k3y + k4y);
t_next = t_cur + t_interval;
// append to result;
vec_t.push_back(t_next);
vec_x.push_back(x_next);
vec_y.push_back(y_next);
// keep data;
t_cur = t_next;
x_cur = x_next;
y_cur = y_next;
}else
break;
}
return;
}
龙格库塔方法广泛应用在微分积分求数值解的领域,其精确度非常之高,理论相对复杂。
简单的说,是应用了级数的性质以及斜率的概念。上述代码是二维龙格库塔方法。采用了回调方法,用户自己改写借口即可