人脸检测——Faster R-CNN

转自http://blog.csdn.net/shuzfan/article/details/52662384?locationNum=12

本次介绍人脸检测方法Faster R-CNN:

《2016 Arxiv: Face Detection with the Faster R-CNN》.

上面这篇文章,是对Faster R-CNN的人脸检测实现,原始的Faster R-CNN实现的是多目标检测,即下面这篇文章:

《2015 CVPR: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks》.

核心导读:

RPN(Region Proposal Networks) + Fast R-CNN

RPN负责找到可能的目标窗口,R-CNN负责进一步判断目标。

因为讲解Faster R-CNN的文章已经很多了,所以我这里就快速的切入几个要点。

———————————— RPN ————————————

RPN负责从一副输入图像中选出一些候选目标窗口,它的作用和古老的“Sliding Window”(滑动窗口)类似,但后者通常会在一幅图像上产生数以万计的窗口。

下面给出RPN的示意图:

RPN

输入: 一幅图像,尺寸 M×600 , 即resize使得最短边为600.

中间输出: conv feature map,大小 m×n 。在该feature map上以 3×3 滑窗,为了检测不同形状的窗口,这里每一个滑动窗口代表了可能的k=9种实际窗口(分别是3种不同尺度和3种不同宽高比)。每一个实际窗口,我们都称之为anchor。

最终输出: 一是:classifier score map,大小为 m× n×2×k ,表示每一个窗口是或是不是目标的概率; 
二是:regression map, 大小为 m× n×4×k ,表示每一个窗口所回归出来的四个坐标 [x,y,w,h]

Test的时候,我们可以根据score map以一定阈值选出候选窗口,然后以regression map来修正这些候选框。

显然,RPN的Loss包含了两个部分,分别是分类和回归:

RPN-Loss

其中, pi  是第  i  个anchor属于目标的概率。

———————————— Faster R-CNN ————————————

现在给出整体的结构图:

Faster R-CNN

由上图可以看出,RPN负责提供候选窗口,R-CNN负责对这些窗口做进一步判断,一共是先后的两部分。 
而且,两部分共用前面的所有的层,这样就通过参数共享大大减少了模型大小,从而提高了速度。 
最后做目标确认的时候,使用了ROI-Pooling方法,即只pooling目标区域。

———————————— 训练策略 ————————————

另外还需要注意的就是训练策略了。

论文最终采用了“Alternating training”的训练策略,分为4阶段:

(1)训练RPN;

(2) 利用RPN产生的候选窗口来训练R-CNN;

(3)在(2)的基础上训练再次RPN,只不过保持共享层不训练;

(4)在(3)的基础上训练R-CNN分支,同时保持其它层不变。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值