zyazky

All things are difficult before they are easy.
私信 关注
zyazky
码龄5年

All things are difficult before they are easy.

  • 354,001
    被访问量
  • 44
    原创文章
  • 26,416
    作者排名
  • 128
    粉丝数量
  • 于 2016-04-02 加入CSDN
获得成就
  • 获得100次点赞
  • 内容获得51次评论
  • 获得193次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #视觉/OpenCV#TensorFlow#机器学习#深度学习#Python#神经网络#图像处理#PyTorch#算法
TA的专栏
  • 深度学习
    17篇
  • caffe
    11篇
  • 机器学习
    2篇
  • jetson tk1
    5篇
  • opencv
    3篇
  • 人脸
    15篇
  • 模型压缩
    5篇
  • linux
    9篇
  • c++
    13篇
  • matlab
    4篇
  • python
    3篇
  • 计算机视觉
    1篇
  • CUDA
    1篇
  • 计算机
    8篇
  • 认知
    1篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

C++ 中的 new/delete 和 new[]/delete[]深入理解

在 C++ 中,你也许经常使用 new 和 delete 来动态申请和释放内存,但你可曾想过以下问题呢?new 和 delete 是函数吗?new [] 和 delete [] 又是什么?什么时候用它们?你知道 operator new 和 operator delete 吗?为什么 new [] 出来的数组有时可以用 delete 释放有时又不行?…如果你对这些问题都有疑问的话,
原创
6388阅读
0评论
7点赞
发布博客于 5 年前

Ubuntu16.04+CUDA9.0+CUDNNv7.1+opencv3.4.0+anaconda3+Matlab 2017a+caffe安装

Ubuntu16.04+CUDA9.0+CUDNNv7.1+opencv3.4.0+anaconda3+Matlab 2017a的相关安装配置参见之前的博客。接下来直接进入caffe的安装配置环节。General dependenciessudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopenc...
原创
1118阅读
0评论
0点赞
发布博客于 3 年前

win10下安装matlab r2018a破解版

MathWorks在三月发布了matlab r2018a版本,新版本在诸多方面进行了加强和修复,新增实时编辑功能,改善了语言和编程板块,在数学、图形、数据导入和导出、数据分析等方面都有不同程度的改进和增添,新版优化了启动速度,而高级软件开发功能让使用者能发挥更大的创造力。小编整理了matlab r2018a破解版,附带破解文件,帮助用户完美激活软件,破除使用限制,永久免费使用,欢迎下载体验提示:...
原创
35174阅读
7评论
9点赞
发布博客于 3 年前

在Ubuntu 16.04下安装Matlab 2017a

Matlab 2017a的安装文件,大概有10个G,可以说比之前的版本都要大。安装文件由三个部分组成,分别为两个ISO镜像和一个用于破解的压缩包,如下图所示。安装文件准备完毕后,首先解压用于破解的rar压缩文件。在Linux底下解压rar文件需要首先安装相应的解压缩工具。 sudo apt-get install unrar工具安装后,键入sudo rar x *.ra...
原创
860阅读
0评论
0点赞
发布博客于 3 年前

Ubuntu16.04下搭建Eclipse C++开发环境

ubuntu下使用Eclipse下搭建开发环境基本上网上教程一大堆,但是复杂度太大,因为很多教程都是从JDK开始安装一直到最后,而且很多都是从别的linux发行版上弄来的方法,各种编译直接吓死人有木有,其实ubuntu的方便之处很大程度上在于atp的使用,抹杀了atp-get的ubuntu那就太鸡肋了。​ OK,正题,再ubuntu下搭建Eclipse C++开发环境。​ 首先,jdk的问...
原创
1555阅读
0评论
0点赞
发布博客于 3 年前

Ubuntu 16.04 安装C++开发平台CodeBlocks

Code::Blocks 是一个开放源码的全功能的跨平台C/C++集成开发环境。 Code::Blocks是开放源码软件。Code::Blocks由纯粹的C++语言开发完成,它使用了著名的图形界面库wxWidgets版。对于追求完美的C++程序员,再也不必忍受Eclipse的缓慢,再也不必忍受VS.NET的庞大和高昂的价格。安装基本编译环境(库文件)sudo apt-get instal...
原创
559阅读
0评论
0点赞
发布博客于 3 年前

Ubuntu 16.04 安装 破解版的PyCharm

下面开始教程先在PyCharm官网下载安装包链接:https://www.jetbrains.com/pycharm/download/#section=linux选择的是Professional专业版,直接点击DOWNLOAD下载就行了右键安装包,点击“Extract Here”意思是提取到这里,相当于解压 一 . 1.修改hosts文件:添加下面一行到hosts文件,...
转载
3273阅读
0评论
0点赞
发布博客于 3 年前

ubuntu16.04安装opencv3.4.1及卸载,以及opencv与anaconda相关问题,import cv2,no module named cv2填坑指南

1.去官网下载opencv,在本教程中选用的时opencv3.4.1,其他版本的配置方法异曲同工。下载,选择sources版本.2.解压下载下来的zip包unzip opencv-3.4.1.zip3.进入到解压后的文件包中4.安装依赖库和cmake ,如果提醒需要apt-get update,那就先sudo su进入root权限,再sudo apt-get update,然后...
原创
8366阅读
8评论
3点赞
发布博客于 3 年前

ubuntu16.04下spyder和jupyter notebook的使用

一、在终端输入spyder即可打开spyder:gs@gs:~$ spyder打开之后将其Lock in launcher,则以后点击图标即可启动。二、spyder启动后黑屏解决办法1.在终端输入命令:cd /etc/ld.so.conf.d进入到当前目录。2.在终端输入命令:sudo cat x86_64-linux-gnu_GL.conf会显示以下结果:/usr/lib/nv...
转载
1190阅读
0评论
0点赞
发布博客于 3 年前

Ubuntu下安装CUDA9.0和cudnn7.1

一、最简单的是采用cuda的deb安装方式:1. Pre-installation Actions这一步需要检查GPU是否支持CUDA Ubuntu版本是否受支持 gcc版本检查 Kernel Headers and Development Packages 是否已安装这些步骤官方教程很详细,请移步官方教程第二节Pre-installation Actions2. 下载Ni...
原创
694阅读
0评论
0点赞
发布博客于 3 年前

EFI分区如何删除

EFI分区的功能可以百度百科,不在此赘述。这里只讲如何删除无用的EFI分区的步骤。特别提醒,这个动作会将磁盘上的所有数据都清理干净,所以还需要提前备份原有的磁盘数据,以防数据丢失。方法/步骤 测试是在一个电脑中有两块硬盘,操作系统中的磁盘不动,只是清除另一块硬盘的EFI分区。开始→运行→输入:Diskpart 点击确定打开CMD 然后,输入:list disk 按回车(E...
原创
7940阅读
0评论
2点赞
发布博客于 3 年前

Ubuntu16.04安装搜狗输入法

1、系统设置---->语言支持点击安装输入密码,授权耐心等待2、等待结束,下图红框中点击安装、移除语言下图中选择中文(简体)出现下图,耐心等待3、等待结束,安装从搜狗官网下载的安装包,使用dpkg  -i 命令安装,会提示有错误,如下图:提示需要3个依赖包,分别是:fcitx-libs    fcitx-libs-qt    lib...
原创
323阅读
0评论
0点赞
发布博客于 3 年前

Windows(7,8,10)和Ubuntu 16.04 双系统,时间不统一解决方案

解决办法:1. 先在ubuntu下更新一下时间,确保时间无误:2. 打开终端:Ctrl + Alt + T3. 终端输入:sudo apt-get install ntpdate4. 接着输入:sudo ntpdate time.windows.com5. 最后将时间更新到硬件上: 终端输入:win7&8终端执行:sudo hwclock -w -systohc w...
原创
843阅读
0评论
0点赞
发布博客于 3 年前

新笔记本电脑安装Ubuntu16.04.5和windows10双系统

一、笔记本电脑配置处理器:Intel® Core™ i7-8850H CPU @ 2.60GHz × 12内存:16G     显卡:1070硬盘:512SSD+1T机械+1TSSD二、安装流程我的电脑自带的windows10系统在512SSD上,打算把Ubuntu安装到自己加装的1TSSD上。(1)在win10下把固态硬盘分出800G,并设置为未分配。(2)用ultr...
原创
1909阅读
0评论
0点赞
发布博客于 3 年前

CNN中感受野的计算

感受野(receptive field)是怎样一个东西呢,从CNN可视化的角度来讲,就是输出featuremap某个节点的响应对应的输入图像的区域就是感受野。在机器视觉领域的深度神经网络中有一个概念叫做感受野,用来表示网络内部的不同位置的神经元对原图像的感受范围的大小。神经元之所以无法对原始图像的所有信息进行感知,是因为在这些网络结构中普遍使用卷积层和pooling层,在层与层之间均为局部相连(通...
原创
4319阅读
0评论
4点赞
发布博客于 3 年前

机器学习中的范数规则化之(二)核范数与规则项参数选择

机器学习中的范数规则化之(二)核范数与规则项参数选择zouxy09@qq.comhttp://blog.csdn.net/zouxy09        上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮叨下核范数和规则项参数选择。知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正。谢谢。 三、核范数       核
转载
581阅读
0评论
0点赞
发布博客于 4 年前

如何批量替换修改图片名或更改文件名

我们外出旅游拍了大量的照片,如果想整理一下这些照片,使他的文件名统一添加上一个前缀或是后缀,这时如果一个个修改的话会非常麻烦,有没有一个办法可以一次批量修改所有的照片文件名呢,下面我们就来看一下如何批量修改替换文件名工具/原料好压方法/步骤在开始菜单中找到好压的快
转载
8824阅读
0评论
0点赞
发布博客于 5 年前

AR人脸数据库pgm图片转换jpg,matlab实现程序

AR人脸库(美国):(下载2600张)Purdue 大学 126人的彩色照片 光照 尺度和表情变化 126 people over 4 000 color images虽然不是原始人脸库,但基本上就是论文中用到的,对于重现实验很有帮助!!120*165的灰度图,是pgm格式,要自己转换成jpg或其他格式共100张,前50张是男性人脸,后50张是女性人脸每个目标有26张图片,前13张为场景1
原创
2436阅读
0评论
2点赞
发布博客于 5 年前

卷积神经网络大总结

#Deep Learning回顾#之2006年的Science Paper大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM、AdaBoost、随机森林、GBDT、LR、FTRL这些概念。究其原因,主要是神经网络很难解决训练的问题,比如梯度消失。当时的神经网络研究进入一个低潮期,不过H
原创
40179阅读
1评论
16点赞
发布博客于 5 年前

Deep Learning(深度学习)

转自:http://blog.csdn.net/augusdi/article/details/20238157Deep Learning(深度学习)ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deep learning教程,用的
转载
2064阅读
0评论
3点赞
发布博客于 5 年前

Caffe调参经验资料文章

caffe调参经验资料文章 http://www.thinkface.cn/thread-4402-1-1.html (出处: thinkface论坛)调参是个头疼的事情,Yann LeCun、Yoshua Bengio和Geoffrey Hinton这些大牛为什么能够跳出各种牛逼的网络?下面一些推荐的书和文章:调参资料总结Neural Network: Trick o
转载
863阅读
0评论
0点赞
发布博客于 5 年前

三维人脸识别预处理,3D face recognition preprocess

本文由兔死机发布在http://blog.csdn.NET/smartempire/article/details/31373817最近在做三维人脸识别相关的东西,在已获取三维数据的情况下进行人脸的识别切割是第一步,本文将介绍预处理内的几个操作,最终给出切割后的三维人脸数据以及经过变换的灰度图像。作者之前申请了国内的三维人脸数据库都没申请到,FRGC v2库也没有回复,只申请到了一
转载
1292阅读
0评论
0点赞
发布博客于 5 年前

[王晓刚]深度学习在图像识别中的研究进展与展望

深度学习是近十年来人工智能领域取得的最重要的突破之一。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域都取得了巨大成功。本文将重点介绍深度学习在物体识别、物体检测、视频分析的最新研究进展,并探讨其发展趋势。1. 深度学习发展历史的回顾现有的深度学习模型属于神经网络。神经网络的历史可追述到上世纪四十年代,曾经在八九十年代流行。神经网络试图通过模拟大脑认知的机理
转载
1733阅读
0评论
0点赞
发布博客于 5 年前

使用Caffe尝试DeepID

转自:http://blog.csdn.net/a_1937/article/details/50334919使用Caffe复现DeepID实验本实验使用Casia-Webface part2的切图来复现DeepID实验结果。DeepID网络配置文件训练验证数据组织实验结果结果分析DeepID网络配置文件-下面给出deepId_train_tes
转载
1268阅读
0评论
0点赞
发布博客于 5 年前

《Deep Learning Face Representaion from Predicting 10000 Classes》读书报告

1、基本思想训练多个深度卷积神经网络(deep ConvNets)对输入的人脸块(face patches)进行特征提取,然后训练每一个卷积神经网络(以下简称为ConvNet)的目标是对输入的face patch进行分类,这一步是有监督的训练,即每一个face patch对应于一个类别标签,每一个ConvNet 的输出节点数目是相同的,即160维。然后所有的这些ConvNets
转载
575阅读
0评论
0点赞
发布博客于 5 年前

深度学习——缩减+召回加速网络训练

转自:http://blog.csdn.net/shuzfan/article/details/51439672本次介绍的是怎样通过对训练数据进行缩减以及召回而加快网络训练速度,《Accelerating Deep Learning with Shrinkage and Recall》。这篇文章给人的感受就是:想法很简单,实现的也很粗糙。但是,问题的角度比较新颖,而且感觉有很大空间
转载
678阅读
0评论
0点赞
发布博客于 5 年前

剪枝+再训练:稀疏化DeepID2

压缩的核心剪枝再训练算法流程剪枝准则实验分析本次介绍的依然是压缩网络的方法,不过有了具体的应用场景:压缩的模型是DeepID2+。方法来源于《2015 arxiv: Sparsifying Neural Network Connections for Face Recognition》,文章是王晓刚、汤晓鸥团队的,所以结果依旧很漂亮,但谁又能保证没点trick呢。T_T
转载
1153阅读
0评论
0点赞
发布博客于 5 年前

网络压缩-量化方法对比

转自:http://blog.csdn.net/shuzfan/article/details/51678499本次介绍的是一种压缩神经网络模型大小的方法,来自《2014 arxiv:Compressing Deep Convolutional Networks using Vector Quantization》。该方法和很多之前的神经网络压缩方法一样,基本只对全连接层有效,因此这里权作
转载
2695阅读
0评论
1点赞
发布博客于 5 年前

深度学习方法(七):最新SqueezeNet 模型详解,CNN模型参数降低50倍,压缩461倍!

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。 技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同学加入。继续前面关于深度学习CNN经典模型的整理,之前介绍了CNN网络Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning(点击查看)的网络结构。本文讲一下最新由UC Ber
转载
1689阅读
0评论
0点赞
发布博客于 5 年前

【论文阅读】Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff

原论文是:《 Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman coding》本博客是该论文的阅读笔记,不免有很多细节不对之处。还望各位看官能够见谅,欢迎批评指正。更多相关博客请猛戳:http://blog.csdn.net/cy
转载
3980阅读
0评论
1点赞
发布博客于 5 年前

FaceNet--Google的人脸识别

转自:http://blog.csdn.net/stdcoutzyx/article/details/46687471引入随着深度学习的出现,CV领域突破很多,甚至掀起了一股CV界的创业浪潮,当次风口浪尖之时,Google岂能缺席。特贡献出FaceNet再次刷新LFW上人脸验证的效果记录。本文是阅读FaceNet论文的笔记,所有配图均来自于论文。 转载请注明:h
转载
1665阅读
0评论
0点赞
发布博客于 5 年前

DeepFace--Facebook的人脸识别

连续看了DeepID和FaceNet后,看了更早期的一篇论文,即FB的DeepFace。这篇论文早于DeepID和FaceNet,但其所使用的方法在后面的论文中都有体现,可谓是早期的奠基之作。因而特写博文以记之。DeepFace基本框架本文的贡献     DeepFace一文依旧是沿着“检测-对齐-人脸表示-分类”这一人脸识别技术路线来的,其贡献在于对人脸对齐和
原创
4901阅读
3评论
1点赞
发布博客于 5 年前

DeepID算法实践

转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/45570221好久没有写博客了,I have failed my blog. 目前人脸验证算法可以说是DeepID最强,本文使用theano对DeepID进行实现。关于deepid的介绍,可以参见我这一片博文 DeepID之三代。当然DeepID最强指的是DeepID和联合
转载
747阅读
0评论
0点赞
发布博客于 5 年前

linux下python脚本文件的执行与编码解析

一、先将终端所在路径切换到python脚本文件的目录下然后给脚本文件运行权限,一般755就OK,如果完全是自己的私人电脑,也不做服务器什么的,给777的权限问题也不大(具体权限含义参考chmod指令的介绍,就不赘述了):chmod 755 ./*.py然后执行。如果在脚本内容的开头已经给出了类似于如下的注释:#!/usr/bin/env python那就可以直接在终端里
原创
2101阅读
0评论
0点赞
发布博客于 5 年前

卷积神经网络

转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/41596663自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文
转载
443阅读
0评论
0点赞
发布博客于 5 年前

DeepID人脸识别算法之三代

转自:http://blog.csdn.net/stdcoutzyx/article/details/42091205DeepID人脸识别算法之三代转载请注明:http://blog.csdn.NET/stdcoutzyx/article/details/42091205DeepID,目前最强人脸识别算法,已经三代。如今,深度学习方兴未艾,大数据风起云涌,各
转载
577阅读
0评论
0点赞
发布博客于 5 年前

Inception in CNN

转自:http://blog.csdn.net/stdcoutzyx/article/details/51052847之前也写过GoogLeNet的笔记,但那个时候对Inception有些似懂非懂,这周重新看了一遍,觉得有了新的体会,特地重新写一篇博客与它再续前缘。本文属于论文笔记性质,特此声明。Network in NetworkGoogLeNet提出之时,说
转载
460阅读
0评论
0点赞
发布博客于 5 年前

caffe基础资料

1)训练和测试自己的图片http://blog.csdn.net/langb2014/article/details/504585202) caffe学习资源汇总http://blog.csdn.net/langb2014/article/details/515433883)caffe调参经验资料文章http://blog.csdn.net/langb2014/arti
转载
329阅读
0评论
0点赞
发布博客于 5 年前

Caffe学习:pycaffe利用caffemodel进行分类

转自:http://blog.csdn.net/u011762313/article/details/48342495导入相关库import caffe配置# caffemodel文件MODEL_FILE = 'model/_iter_10000.caffemodel'# deploy文件,参考/caffe/models/bvlc_ale
转载
704阅读
0评论
0点赞
发布博客于 5 年前

Joint Cascade Face Detection and Alignment(JDA)文档

转自:http://blog.csdn.net/u010333076/article/details/50637313地址:https://github.com/luoyetx/JDA一、算法流程图:训练过程:检测过程:二、类图:从上图可以看出整个系统主要分为两大模块,数据存储模块与CART模块,两个模块集中于
转载
667阅读
0评论
0点赞
发布博客于 5 年前

论文《Joint Cascade Face Detection and Alignment》笔记

转自:http://blog.csdn.net/u010333076/article/details/50637342论文:Joint Cascade Face Detection and Alignment.pdf实现:https://github.com/FaceDetect/jointCascade_py部分内容引用自:http://www.cnblogs.c
转载
619阅读
0评论
0点赞
发布博客于 5 年前

让opencv输出人脸检测的得分(置信率),找出一些和脸比较像但是不是脸的负样本

最近项目略多,其中一个需要找出一些和脸比较像但是不是脸的负样本,想用opencv的人脸检测器检测到的错误脸作为这样的负样本。但是国内(包括国外)居然几乎没有相关的资料如何输出detectMultiScale()的置信率或者说是人脸得分所以写一篇小小的总结供有相关需求的人参考。转载需注明:http://www.cnblogs.com/sciencefans/看了下人脸识别函数
转载
1916阅读
0评论
2点赞
发布博客于 5 年前

人脸识别技术大总结1——Face Detection & Alignment

转自:http://www.cnblogs.com/sciencefans/p/4394861.html#!comments搞了一年人脸识别,寻思着记录点什么,于是想写这么个系列,介绍人脸识别的四大块:Face detection, alignment, verification and identification(recognization),本别代表从一张图中识别出人脸位置,把人脸上
转载
526阅读
0评论
0点赞
发布博客于 5 年前

级联CNN人脸检测

转自:http://blog.csdn.net/u010333076/article/details/50637317论文:A Convolutional Neural Network Cascade for Face Detection.pdf实现:https://github.com/anson0910/CNN_face_detection该论文发表于2015年CV
转载
3969阅读
0评论
1点赞
发布博客于 5 年前

人脸检测——Faster R-CNN

转自http://blog.csdn.net/shuzfan/article/details/52662384?locationNum=12本次介绍人脸检测方法Faster R-CNN:《2016 Arxiv: Face Detection with the Faster R-CNN》.上面这篇文章,是对Faster R-CNN的人脸检测实现,原始的Faster R-CNN
转载
2095阅读
0评论
0点赞
发布博客于 5 年前

c++遍历文件夹,获取文件夹下所有文件名

[cpp] view plain copy// dirlist.cpp : 定义控制台应用程序的入口点。    #include "stdafx.h"  #include   #include   #include   #include     using namespace std;    /****************
转载
3511阅读
0评论
0点赞
发布博客于 5 年前

C/C++常用计时函数

目前,存在着各种计时函数,一般的处理都是先调用计时函数,记下当前时间tstart,然后处理一段程序,再调用计时函数,记下处理后的时间tend,再tend和tstart做差,就可以得到程序的执行时间,但是各种计时函数的精度不一样.下面对各种计时函数,做些简单记录.方法1使用time() 函数                                         
原创
612阅读
0评论
0点赞
发布博客于 5 年前

_tmain()和main()的区别

有时看别人写的程序发现主函数不是int main(),而是int _tmain(),而且头文件也不是iostream.h>而是stdafx.h>这是怎么回事呢?首先,这个_tmain()是为了支持unicode所使用的main一个别名而已,既然是别名,应该有宏定义过的,在哪里定义的呢?就在那个让你困惑的stdafx.h>里,有这么两行#include stdio.h>#include 我们
原创
734阅读
0评论
1点赞
发布博客于 5 年前

CVPR2016 论文快讯:人脸专题

原创 2016-07-15 汤旭 深度学习大讲堂点击上方“深度学习大讲堂”可订阅哦!深度学习大讲堂是高质量原创内容平台,邀请学术界、工业界一线专家撰稿,致力于推送人工智能与深度学习最新技术、产品和活动信息!前言    人脸识别,作为深度学习应用一个比较具有难度的方向,近几年一直得到工业界和学术界的广泛关注。目前大部分人了解到的人脸识别的性能都是从LFW数据库说起,大家一谈起人脸
转载
2809阅读
0评论
0点赞
发布博客于 5 年前

CVPR 2016 | 商汤科技论文解析:物体分割

论文:Multi-scale Patch Aggregation(MPA)for Simultaneous Detection and Segmentation论文作者:Shu Liu, Xiaojuan Qi, Jianping Shi, Hong Zhang, Jiaya JiaThe Chinese University of Hong Kong(香港中文大学),Se
转载
2131阅读
0评论
0点赞
发布博客于 5 年前

CVPR 2016|商汤科技论文解析:行为识别与定位

论文:A Key Volume Mining Deep Framework for Action Recognition论文作者:Wangjiang Zhu, Jie Hu, Gang Sun, Xudong Cao, Yu QiaoTsinghua University(清华大学),Shenzhen Institutes of Advanced Technology, C
转载
3684阅读
1评论
2点赞
发布博客于 5 年前

CVPR 2016|商汤科技论文解析:人脸检测中级联卷积神经网络的联合训练

论文:Joint Training of Cascaded CNN for Face Detection论文作者:Hongwei Qin, Junjie Yan, Xiu Li, Xiaolin HuGrad.School at Shenzhen Tsinghua University(清华大学深圳研究生院),Tsinghua University(清华大学),SenseT
转载
4791阅读
0评论
1点赞
发布博客于 5 年前

提升深度学习模型的表现的实用技巧

你可以怎样让你的深度学习模型实现更好的表现?这是一个我常被问到的问题:「我该怎么提升准确度?」或者「如果我的神经网络表现很糟糕我该怎么办?」……我常常给出的回答是:「我也不完全知道,但我有很多想法。」然后我开始列出所有我可以想到的可能能够带来效果改进的想法。我将这些想法汇集到了这篇博客中,这些想法不仅能在机器学习上为你提供帮助,而且实际上
转载
1008阅读
0评论
1点赞
发布博客于 5 年前

栈和堆内存分配

我们都知道C++中有三种创建对象的方法,如下:#include using namespace std;class A{private: int n;public: A(int m):n(m) { } ~A(){}};int main(){ A a(1); //栈中分配 A b = A(1); //栈中分配
原创
447阅读
0评论
0点赞
发布博客于 5 年前

学习编程与调试

计算机组成原理→DOS命令→汇编语言→C语言、代码书写规范→数据结构、编译原理、操作系统→计算机网络、数据库原理、正则表达式→其它语言(包括C++)、架构……眼过千遍不如手过一遍!书看千行不如手敲一行!手敲千行不如单步一行!单步源代码千行不如单步对应汇编一行!单步类的实例“构造”或“复制”或“作为函数参数”或“作为函数返回值返回”或“参加各种运算”或“退出作用域”的
原创
268阅读
0评论
0点赞
发布博客于 5 年前

深入理解主函数main()的输入参数及返回值问题

C语言之Main函数返回值问题分析: 很多人甚至市面上的一些书籍,都使用了void main( ) ,其实这是错误的。C/C++ 中从来没有定义过void main( ) 。C++ 之父 Bjarne Stroustrup 在他的主页上的 FAQ 中明确地写着 The definition void main( ) { /*... */ } is not and never has been
原创
1968阅读
0评论
2点赞
发布博客于 5 年前

关于#include "stdafx.h"以及预编译头文件的问题

提示:Cannot open include file: 'stdafx.h ': No such file or directory #include       "stdAfx.h "     放到另外#include的前面,也就是程序的最前面。使用预编译头文件需要把它放到程序最前面,否则它前面的内容会被忽略。 -------------------------------
转载
3915阅读
0评论
0点赞
发布博客于 5 年前

C++中几个输入函数的用法和区别(cin、cin.get()、cin.getline()、getline()、gets()、getchar()))

1、cin2、cin.get()3、cin.getline()4、getline()5、gets()6、getchar() 1、cin>> 用法1:最基本,也是最常用的用法,输入一个数字:#include using namespace std;int main (){int a,b;cin>>a>>b;cout<<a+b<<endl;}输入:2[回车]3[回车]输出:5
原创
1723阅读
0评论
5点赞
发布博客于 5 年前

CUDA编程入门

一    首先看一下CPU和GPU的微架构和计算能力对比。例如我的笔记本lenovo Y480,4核CPU,NVIDIA GT650M显卡384个CUDA核。计算能力对比:CPU:       4 * 2.5=10GFLOPSGPU:    384 * 0.88=  337.92GFLOPS 显卡计算性能是4核i5 CPU的33.792倍,因此我们可以充分利用这
原创
3622阅读
2评论
1点赞
发布博客于 5 年前

NVIDIA Jetson TK1学习与开发——JETPACK自动刷机

前文记述了如何使用下载好的deb包在Jetson tk1上安装CUDA和OpenCV的方法。但是目前NVIDIA官网已经不提供单独的CUDA和OpenCV4Tegra的下载包,所有的下载、安装工作都集成到了Jetpack安装文件中去。这就意味着如果你想安装最新的NVIDIA产品,就必须使用Jetpack安装方法。如果你拿到一块新的Jeston tk1或者tx1开发板,笔者建议直接使用Jetpack
原创
13033阅读
4评论
2点赞
发布博客于 5 年前

NVIDIA Jetson TK1学习与开发——手动刷机

手动刷机刷机的步骤也在官网指南里,步骤不难,不过按照CSDN上一高手的指南来看,在解压刷机需要的文件的时候,需要用--numeric-owner选项,否则就会出现我遇到的权限问题。作为Linux小白,保险起见,解压还是加上了这个选项,具体步骤如下:1) 在Linux下,到L4T的页面,找到Jetson TK1和sample file system这两个下载:目前最新的版本是R21.
原创
1708阅读
0评论
0点赞
发布博客于 5 年前

NVIDIA Jetson TK1学习与开发——安装cudnn与caffe

注意事项:1. 一般情况先装 JetPack,之后再配置caffe。2. 其中编译caffe时可能报链接错误,鄙人认为是boost库不全造成的,建议在教程的基础上安装sudo apt-get install libboost-all-dev 3. 由于嵌入式开发板不如桌面级显卡给力,make runtest 这一步十分漫长,可能需要好长一段时间(具体记不清了),但是这一步不
原创
5175阅读
5评论
2点赞
发布博客于 5 年前

NVIDIA Jetson TK1学习与开发——安装cuda和opencv

1、开箱第一步进入从命令行界面进入图形界面cd NVIDIA-INSTALLER sudo ./installer.sh (只能运行一次)sudo reboot 重启后进入开机登陆界面,账号和密码均是:ubuntu2、平台开发的选择一般来说,对嵌入式的开发有两种选择,原生编译(native compilation)和交叉编译(cross-compil
原创
5891阅读
1评论
2点赞
发布博客于 5 年前

NVIDIA Jetson TK1学习与开发——简介(针对嵌入式系统应用释放 GPU 的潜能)

NVIDIA Jetson TK1 开发者套件为您提供所需的一切,针对嵌入式系统应用释放 GPU 的潜能。它以革命性的NVIDIA Tegra® K1 SoC 为基础构建,并且使用相同的NVIDIA Kepler™ 计算核心,该核心专为全世界的超级计算机而设计。这为您提供了一款全功能NVIDIA CUDA® 平台,用于快速开发和部署面向计算机视觉、机器人技术、医疗和更多领域的计算密集型
原创
7504阅读
0评论
2点赞
发布博客于 5 年前

深度学习(二十九)Batch Normalization 学习笔记

Batch Normalization 学习笔记原文地址:http://blog.csdn.net/hjimce/article/details/50866313作者:hjimce一、背景意义本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:《Batch Normalization: Accelerating Deep Network Traini
转载
784阅读
0评论
0点赞
发布博客于 5 年前

机器学习中的范数规则化之(一)L0、L1与L2范数

机器学习中的范数规则化之(一)L0、L1与L2范数        今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正。谢谢。  
转载
483阅读
0评论
0点赞
发布博客于 5 年前

Matlab与C++混合编程(依赖OpenCV)

Matlab与C++混合编程(依赖OpenCV)        之前在运行别人论文的代码的时候,经常有遇到Matlab与C++混合编程的影子。实际上就是通过Matlab的Mex工具将C++的代码编译成Matlab支持调用的可执行文件和函数接口。这样一方面可以在Matlab中利用已经编写好的函数,尽管这个函数是用C++编写的。实现了交流无国界,没有江山一统的谁,只有四海之内皆兄弟的豪
转载
395阅读
0评论
0点赞
发布博客于 5 年前

Caffemodel数据结构解析与Protocol Buffer技术详解(C++实例)

Caffe中,数据的读取、运算、存储都是采用Google Protocol Buffer来进行的,所以首先来较为详细的介绍下Protocol Buffer(PB)。PB是一种轻便、高效的结构化数据存储格式,可以用于结构化数据串行化,很适合做数据存储或 RPC 数据交换格式。它可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式。是一种效率和兼容性都很优秀的二进制数
转载
2944阅读
0评论
0点赞
发布博客于 5 年前

Caffe使用step by step:caffe框架下的基本操作和分析

caffe虽然已经安装了快一个月了,但是caffe使用进展比较缓慢,果然如刘老师说的那样,搭建起来caffe框架环境比较简单,但是完整的从数据准备->模型训练->调参数->合理结果需要一个比较长的过程,这个过程中你需要对caffe中很多东西,细节进行深入的理解,这样才可以知道为什么能有这样的结果,在训练或者fine-tuning时知道针对调整的方法。下面针对caffe中的使用进行讲解。  
转载
370阅读
0评论
0点赞
发布博客于 5 年前

caffe 有关prototxt文件的设置解读

solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为[plain] view plain copy  ./bulid/tools/caffe train -solver  *_solver.prototxt  在Deep Learning中
转载
1179阅读
0评论
0点赞
发布博客于 5 年前

c++中的虚函数、虚基类、类模板

一、虚函数首先要明白C++为什么要引进虚函数这个机制,虚函数就是在基类中被关键字virtual说明,并在派生类中重新定义的函数。虚函数的作用是允许在派生类中重新定义与基类同名的函数,并且可以通过基类指针或引用来访问基类和派生类中的同名函数。从以上的定义来看,需函数简单的说就是为了让基类指针能够指向派生类中与基类同名的函数而引进的,举个简单的例子,1:你定义了一个“图形类”这样的基类,然
原创
4132阅读
2评论
1点赞
发布博客于 5 年前

梳理caffe代码layer(五)

Layer(层)是Caffe中最庞大最繁杂的模块。由于Caffe强调模块化设计,因此只允许每个layer完成一类特定的计算,例如convolution操作、pooling、非线性变换、内积运算,以及数据加载、归一化和损失计算等。layer这个类可以说是里面最终的一个基本类了,深度网络呢就是一层一层的layer,相互之间通过blob传输数据连接起来。我们先看一张图:然后我们从
转载
996阅读
0评论
0点赞
发布博客于 5 年前

Linux Top 命令解析

TOP命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况。TOP是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执行该命令,它将独占前台,直到用户终止该程序为止.比较准确的说,top命令提供了实时的对系统处理器的状态监视.它将显示系统中CPU最“敏感”的任务列表.该命令可以按CPU使用.内存使用和执行时间对任务进行排序;而且该命令的很多特性都可以
转载
298阅读
0评论
0点赞
发布博客于 5 年前

tmux常用命令与快捷键

tmux是指通过一个终端登录远程主机并运行后,在其中可以开启多个控制台的终端复用软件。tmux是一个优秀的终端复用软件,类似GNU Screen,但来自于OpenBSD,采用BSD授权。使用它最直观的好处就是,通过一个终端登录远程主机并运行tmux后,在其中可以开启多个控制台而无需再“浪费”多余的终端来连接这台远程主机;当然其功能远不止于此。sudo apt-get insta
原创
1513阅读
0评论
0点赞
发布博客于 5 年前

将MNIST手写数字数据集二进制格式转化为.jpg图片格式

MNIST数据库介绍:MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集。它是NIST数据库的一个子集。MNIST数据库官方网址为:http://yann.lecun.com/exdb/mnist/ ,也可以在windows下直接下载,train-images-idx3-ubyte.gz、train-labels-idx1-ubyte.gz等。下载四个文件,
原创
4020阅读
2评论
1点赞
发布博客于 5 年前

warning C4018: “<”: 有符号/无符号不匹配

出错代码:for (int i = 0; i 出错原因分析: vec_test_images 是一个Vector容器 ,ec_test_images.size() 在容器说明中 被定义为: unsigned int 类型, 而j是int 类型 所以会出现: 有符号/无符号不匹配警告错误改正: 定义 i为unsigned类型后就可以了即: for(unsigned int
原创
377阅读
0评论
0点赞
发布博客于 5 年前

C++中sprintf_s与sprintf的不同

今天在程序编译时遇到一个warning,:\convertmnist\convertmnist\mnist.cpp(72): warning C4996: 'sprintf': This function or variable may be unsafe. Consider using sprintf_s instead. To disable deprecation, use _CRT_S
原创
11654阅读
0评论
1点赞
发布博客于 5 年前

光流法原理概述

光流的概念是Gibson在1950年首先提出来的。它是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。一般而言,光流是由于场景中前景目标本身的移动、相机的运动,或者两者的共同运动所产生的。       简单来说,光流是空间运动物体在观测成像平面上
原创
17439阅读
2评论
5点赞
发布博客于 5 年前

基于opencv的L-K光流法跟踪运动目标

一、 对鼠标选中目标运用lk光流法做运动目标检测​//---------------------------------【头文件、命名空间包含部分】--------------------------//描述:包含程序所使用的头文件和命名空间//-------------------------------------------------------------
原创
2373阅读
3评论
0点赞
发布博客于 5 年前

深度学习入门初步

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。       深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是
原创
741阅读
0评论
0点赞
发布博客于 5 年前

深度学习开源框架theano的环境搭建

环境:win7+64位系统相关安装软件: Anaconda2-4.0.0-Windows-x86_64.exevisual_studio_ultimate_2013cuda_7.5.18_windows.exe硬件:联想Y480笔记本电脑, 显卡型号: NVIDIA  GEFORCE  GT 650M 1、安装Anconda。因为如果安装纯净
原创
2984阅读
1评论
0点赞
发布博客于 5 年前

Ubuntu14.04+Windows7双系统安装

安装主要分为以下几步:一. 在windows下为ubuntu系统划出空间;二. 用UltraISO制作U盘启动盘;三. 安装Ubuntu系统;四. 用EasyBCD创建系统启动项;五、第一次接触ubuntu系统,一些小问题的设置。​注意:Linux 目标盘最好是在硬盘的后面,因为 Windows 系统中无法识别 Linux 的 Ext4 分区
原创
359阅读
0评论
0点赞
发布博客于 5 年前

开源深度学习框架Caffe在Ubuntu14.04下的搭建

General dependencies sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compilersudo apt-get install --no-install-recommends libboost-a
原创
1162阅读
0评论
0点赞
发布博客于 5 年前

主流开源深度学习框架对比分析

一、Caffe(Convolutional Architecture for Fast Feature Embedding) BVLC    We believe that Caffe is the fastest convnet implementation available. caffe的官网是http://caffe.berkeleyvision.org/。Caffe是一个清晰而高
原创
3799阅读
0评论
0点赞
发布博客于 5 年前

Caffe缔造者 贾扬清 微信讲座完整版

【转载】原文地址http://suanfazu.com/t/caffe/9479/1一、讲座正文:大家好!我是贾扬清33,目前在Google Brain11,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe9。没有太多准备,所以讲的不好的地方还请大家谅解。我用的ppt242基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutori
转载
681阅读
0评论
0点赞
发布博客于 5 年前

深度学习解决局部极值和梯度消失问题方法简析

多层感知机解决了之前无法模拟异或逻辑的缺陷,同时更多的层数也让网络更能够刻画现实世界中的复杂情形。理论上而言,参数越多的模型复杂度越高,“容量”也就越大,也就意味着它能完成更复杂的学习任务。多层感知机给我们带来的启示是,神经网络的层数直接决定了它对现实的刻画能力——利用每层更少的神经元拟合更加复杂的函数。但是随着神经网络层数的加深,优化函数越来越容易陷入局部最优解(即过拟合,在训练样本上有很好的拟
原创
27064阅读
1评论
4点赞
发布博客于 5 年前

*_train_test.prototxt,*_deploy.prototxt,*_slover.prototxt文件编写时注意事项

1、*_train_test.prototxt文件这是训练与测试网络配置文件(1)在数据层中 参数include{                                 phase:TRAIN/TEST                             }TRAIN与TEST不能有“...”否则会报错,还好提示信息里,会提示哪一行出现了问题,
转载
519阅读
0评论
0点赞
发布博客于 5 年前

Caffe学习系列(10):命令行解析

caffe的运行提供三种接口:c++接口(命令行)、python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个文件夹内。经过编译后,这些文
转载
427阅读
0评论
0点赞
发布博客于 5 年前

vi/vim基本使用方法

vi/vim 基本使用方法本文介绍了vi (vim)的基本使用方法,但对于普通用户来说基本上够了!i/vim的区别简单点来说,它们都是多模式编辑器,不同的是vim 是vi的升级版本,它不仅兼容vi的所有指令,而且还有一些新的特性在里面。例如语法加亮,可视化操作不仅可以在终端运行,也可以运行于x window、 mac os、 windows。vi编辑器是所有Unix及Linux系统下标
转载
434阅读
0评论
0点赞
发布博客于 5 年前

Linux中文件查找方法

一、findfind在不指定查找目录的情况下是对整个系统进行遍历查找 使用格式 :   find  [指定查找目录]  [查找规则]  [查找完后执行的action] [指定查找目录]例如:这里要注意的是目录之间要用空格分开  [查找规则]  (1)根据文件名查找     #  -name //根据文件名查找(精确查找)     #  -iname     
转载
523阅读
0评论
0点赞
发布博客于 5 年前

三十分钟掌握STL

这是本小人书。原名是《using stl》,不知道是谁写的。不过我倒觉得很有趣,所以化了两个晚上把它翻译出来。我没有对翻译出来的内容校验过。如果你没法在三十分钟内觉得有所收获,那么赶紧扔了它。文中我省略了很多东西。心疼那,浪费我两个晚上。译者:karycontact:karymay@163.netSTL概述STL的一个重要特点是数据结构和算法的分离。尽管这是个简单的概念,但这种分离
转载
475阅读
0评论
0点赞
发布博客于 5 年前

大端与小端存储模式详解

端模式(Endian)的这个词出自Jonathan Swift书写的《格列佛游记》。这本书根据将鸡蛋敲开的方法不同将所有的人分为两类,从圆头开始将鸡蛋敲开的人被归为Big Endian,从尖头开始将鸡蛋敲开的人被归为Littile Endian(这句话最为形象)。小人国的内战就源于吃鸡蛋时是究竟从大头(Big-Endian)敲开还是从小头(Little-Endian)敲开。在计算机业Big E
转载
482阅读
0评论
0点赞
发布博客于 5 年前

在linux中如何把2个文件中的内容合到另一个文件中去?

可以使用cat命令,有两种实现的方式,一种将两个文件合并的到一个新的文件,另一种将一个文件追加到另一个文件的末尾。方法一:使用cat命令从文件中读入两个文件,然后将重定向到一个新的文件。这种方法可以一次性合并任意多个文件。用法示例:将file1.txt和file2.txt合并到file.txt$ cat file1.txt file2.txt > file.txt方法二
转载
1016阅读
0评论
0点赞
发布博客于 5 年前

linux 下 .sh 文件语法

介绍:1 开头程序必须以下面的行开始(必须方在文件的第一行):#!/bin/sh符号#!用来告诉系统它后面的参数是用来执行该文件的程序。在这个例子中我们使用/bin/sh来执行程序。当编写脚本完成时,如果要执行该脚本,还必须使其可执行。要使编写脚本可执行:编译 chmod +x filename 这样才能用./filename 来运行2 注释在进行shell编程
转载
805阅读
0评论
0点赞
发布博客于 5 年前

linux常用命令之ls与tree

一、ls命令是linux下最常用的命令之一,ls跟dos下的dir命令是一样的都是用来列出目录下的文件,下面我们就来一起看看ls的用法 英文全名:List即列表的意思,当我们学习某种东西的时候要做到知其所以然,当你知道了这个东西大概是个什么了以后你的思维就会联想到很多的东西学习的就会很快。 1. ls -a 列出文件下所有的文件,包括以“.“开头的隐藏文件(linux下文件隐藏文件
原创
2303阅读
0评论
0点赞
发布博客于 5 年前

增强学习、增量学习、迁移学习——概念性认知

一、增强学习/强化学习(Reinforcement Learning )二、增量学习(Incremental learning)三、迁移学习(Transfer Learning)
原创
25980阅读
8评论
15点赞
发布博客于 5 年前