回归模型图
回归模型图可以对数据进行回归显示。
函数原型
seaborn.lmplot(x, y, data, hue=None,
col=None, row=None, palette=None,
col_wrap=None, height=5, aspect=1,
markers='o', sharex=True, sharey=True,
hue_order=None, col_order=None, row_order=None,
legend=True, legend_out=True, x_estimator=None,
x_bins=None, x_ci='ci', scatter=True, fit_reg=True,
ci=95, n_boot=1000, units=None, order=1,
logistic=False, lowess=False, robust=False,
logx=False, x_partial=None, y_partial=None,
truncate=False, x_jitter=None, y_jitter=None,
scatter_kws=None, line_kws=None, size=None)
参数解读
x,y:数据字段变量名(如上表,date,name,age,sex为数据字段变量名)
作用:根据实际数据,x,y常用来指定x,y轴的分类名称
data: DataFrame,数组或数组列表
hue,row:字符串(数据字段变量名)
作用:hue对数据进行第二次分组(通过颜色区分)
col:字符串(数据字段变量名)
作用:通过设置col指定变量名,以该变量名的内容进行分类,
每一个类别下的数据绘制一个图
(即该变量名下有多少类值就绘制多少个图,并且排列在一行上)
palette:调色板名称,list类别或者字典
作用:用于对数据不同分类进行颜色区别
col_wrap:int
作用:将多列跨行显示
height:标量
作用:指定图的大小
aspect:标量
作用:指定每一面的宽高比
markers:标记
share{x,y} : bool, "col", or "row"
如果为true,facets将跨列共享y轴和/或跨行共享x轴。
{hue,col,row}_order : 列表
表示刻面变量级别的顺序
案例教程
案例代码已上传:Github地址
import seaborn as sns
import matplotlib.pyplot as plt
# 设置样式风格
sns.set(color_codes=True)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例1:
绘制两变量之间的简单线性关系
"""
sns.lmplot(x="total_bill", y="tip", data=tips)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
# 设置样式风格
sns.set(color_codes=True)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例2:
通过设置hue对数据进行第二次分组(通过对颜色进行区分)
"""
sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
# 设置样式风格
sns.set(color_codes=True)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例3:
通过设置markers对数据点进行不同的标记
"""
sns.lmplot(x="total_bill", y="tip", hue="smoker",
data=tips,markers=["o", "x"])
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
# 设置样式风格
sns.set(color_codes=True)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例4:
通过设置palette,显示不同的颜色
"""
sns.lmplot(x="total_bill", y="tip", hue="smoker",
data=tips,palette="Set1")
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
# 设置样式风格
sns.set(color_codes=True)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例5:
通过设置palette=dict显示不同的颜色
"""
sns.lmplot(x="total_bill", y="tip", hue="smoker",
data=tips,palette=dict(Yes="g", No="m"))
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
# 设置样式风格
sns.set(color_codes=True)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例6:
通过设置col指定变量名,以该变量名的内容进行分类,
每一个类别下的数据绘制一个图(即该变量名下有多少类值就绘制多少个图,并且排列在一行上)
"""
sns.lmplot(x="total_bill", y="tip",
col="smoker", data=tips)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
# 设置样式风格
sns.set(color_codes=True)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例7:
通过设置col,将不同的分组分别绘制(列数为类别数)
"""
sns.lmplot(x="size", y="total_bill",
hue="day", col="day",
data=tips, height=6,
aspect=.4, x_jitter=.1)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
# 设置样式风格
sns.set(color_codes=True)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例8:
通过设置col_wrap,将多列换成多行(多列不美观)
"""
sns.lmplot(x="total_bill", y="tip",
col="day", hue="day",
data=tips, col_wrap=2, height=3)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
# 设置样式风格
sns.set(color_codes=True)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例9:
两个变量形成的图
"""
sns.lmplot(x="total_bill", y="tip",
row="sex", col="time",
data=tips, height=3)
plt.show()
案例地址
上述案例代码已上传:Github地址
Github地址https://github.com/Vambooo/SeabornCN
更多技术干货在公众号:数据分析与可视化学研社