瘫痪17年,利用双向脑机接口来诱发触觉,控制机械手

大多数身体健壮的人将完成简单的日常任务视为理所当然的事情-当他们拿起一杯温热的咖啡时,他们可以感觉到咖啡的重量和温度并相应地调整抓地力,这样咖啡液就不会洒出来。对手臂和手具有完整感觉和运动控制能力的人会感觉到,在触摸或抓住一个物体的瞬间,就能感觉到自己与它接触了,从而让他们能够自由地移动或举起它。

然而,当一个人操作假肢时,这些任务就变得非常困难了,更不用说是由意念控制假肢了。

5月20日发表在《Science》杂志上的一篇论文中,来自匹兹堡大学(UniversityofPittsburgh)Rehab Neural Engineering Labs的生物工程师描述了如何通过增加大脑刺激来唤起触觉,从而使操作者更容易通过大脑控制的机械臂。在实验中,用人工触觉来补充视觉将抓取和转移物体所花费的时间缩短了一半,从平均20.9秒缩短到10.2秒。

该项研究的参与者内森·科普兰(NathanCopeland)是一个四肢瘫痪的病人,在他18岁时一场车祸让他从此四肢瘫痪,锁骨以下的部位也永远失去了知觉。

图片来源:UPMC andUniversity of Pittsburgh Schools of the Health Sciences

他很早就参了类似项目,在之前的一些研究文献中也有关于他的描述,他是世界上第一个植入微型电极阵列的人,不仅在他的大脑运动皮层中,而且还在他的体感皮层中。躯体感觉皮层是大脑的一个区域,负责处理来自身体的感觉信息。阵列不仅可以让他用意念控制机械臂,还可以接收触觉反馈,这类似于一个人的脊髓完好时神经回路的运作方式。

双向BCI系统概述

一场车祸导致他的胳膊受到限制,Copeland参加了一项临床试验,测试感觉运动微电极脑机接口(BCI),并植入了由BlackrockMicrosystems开发的四个微电极阵列(通常也被称为犹他阵列)。

科普兰表示:“我已经非常熟悉刺激产生的感觉和在没有刺激的情况下完成任务。尽管这种感觉不是'自然的'--感觉像是压力和轻微的刺痛感--但这从未困扰过我,在任何时候我都没有感觉到刺激是我必须习惯的。在接受刺激的同时完成任务就像PB&J一样。”


这篇论文比之前的一项研究向前迈进了一步。之前的一项研究首次描述了使用微小的电脉冲刺激大脑的感觉区域,可以在一个人的手的不同部位产生感觉,即使他们因为脊髓损伤而失去了四肢的感觉。在这项新研究中,研究人员结合了从大脑中读取信息以控制机械臂的运动,并回写信息以提供感觉反馈的功能。


在一系列测试中,要求参与者从桌子上拿起各种物体并将其转移到高架平台上,通过电刺激提供触觉反馈,从而使参与者完成任务的速度比没有刺激的测试快两倍。

参考

A brain-computer interface that evokes tactile sensations improves robotic arm control

https://www.neurosurgery.pitt.edu/news

Tina编译

文章仅用于学术交流,不用于商业行为,

若有侵权及疑问,请后台留言,管理员即时删侵!

更多阅读

对人脑如何控制手的新认识:我们为什么削水果时,拿的是刀柄而不会拿刀刃?

PNAS:快速脑电波振荡识别并定位癫痫患者的大脑

如何对单手和双手协同运动方向进行神经表征和解码?北理工研究团队给出了相关方案

DEAP:使用生理信号进行情绪分析的数据库(三、实验分析与结论)

干货|详解EEG脑电原理及两种主流脑电设备对比

情绪脑机接口:脑机接口概述专题三 | 从运动脑机接口到情绪脑机接口

手把手教你EMD算法原理与Python实现

美国脑机接口技术研究及应用进展

【思维导图】利用LSTM(长短期记忆网络)来处理脑电数据

你的每一次在看,我都很在意!

Huggingface's BERT是一个基于Transformer模型的开源工具库,用于处理自然语言处理任务,如文本分类、命名实体识别等。它提供了一套易于使用的API预训练模型,可以方便地进行文本处理模型训练。 在Huggingface模型库中,你可以选择需要的预训练模型,并下载相应的文件。例如,你可以选择下载hfl/chinese-roberta-wwm-ext模型。这个模型包含了BERT模型的所有文件,可以在模型库的页面上找到相关的信息下载链接。 在使用HuggingfaceBERT模型时,你可以使用transformers库中的各个类来进行操作。其中,BertConfig类用于配置BERT模型的参数,BertTokenizer类用于对文本进行分词编码,BertModel类则是BERT模型的主要类,用于进行文本特征提取任务处理等操作。 通过使用这些类,你可以根据自己的需求来构建训练BERT模型,从而实现各种自然语言处理的任务。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [自然语言处理之BERT Huggingface源码详细框架图](https://download.csdn.net/download/weixin_43178406/85208373)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [hugging face 模型库的使用及加载 Bert 预训练模型](https://blog.csdn.net/IT__learning/article/details/120741368)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [huggingfaceBert模型的简单使用](https://blog.csdn.net/qq_43422201/article/details/126111454)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑机接口社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值