脑机接口(Brain-Computer Interface,简称BCI)是一种能够实现大脑与外部设备直接沟通的先进技术。通过对大脑活动信号的解码,BCI可以将这些信号转化为命令,驱动外部设备,从而帮助用户进行沟通和操作。这项技术的早期应用主要集中在运动控制方面,例如通过脑信号控制光标或机械肢体的移动。然而,随着科学技术的不断进步,尤其是在人工智能和神经科学领域的突破,BCI技术开始在恢复语言能力方面展现出巨大的潜力,特别是在那些因疾病或损伤而失去言语能力的患者中。
肌萎缩性侧索硬化症(Amyotrophic Lateral Sclerosis,简称ALS)是一种进展性神经退行性疾病,患者在疾病晚期通常会失去自主言语能力。对于这些患者来说,传统的沟通方式(如眼球跟踪系统或手动输入设备)可能因运动能力的丧失而无法使用。因此,如何帮助这些患者恢复基本的沟通能力成为了研究人员关注的焦点。近年来,科学家们通过结合脑科学、人工智能和工程学,成功开发出了语音神经假体,这种装置可以通过解码大脑的皮层活动,将这些信号转化为文本或合成语音,从而为患者提供了一种新的沟通途径。
本篇文章详细讨论了两项关于语音神经假体的研究,这两项研究分别由Card等人和Vansteensel等人开展。Card等人的研究集中在一名患有严重构音障碍的ALS患者身上,通过在其大脑中植入微电极阵列,实时解码其大脑皮层活动并将其转化为文本句子,从而展示了语音神经假体在实际应用中的最新进展。而Vansteensel等人的研究则聚焦于一名患有无音症的ALS患者,他们为患者植入了一种完全植入式的无线脑机接口设备,通过该设备,患者能够在日常生活中通过点击命令进行拼写和呼叫护理人员。
研究方法:
1. Card等人的研究方法:
Card等人的研究对象是一名患有严重构音障碍的ALS患者。研究团队在患者的大脑左侧中央前回(一个主要负责言语运动控制的脑区)植入了四个穿透性微电极阵列,每个阵列包含64个电极,总共256个电极。这些电极通过记录皮层活动,收集与言语运动相关的神经信号,并将其传输给外部计算机系统。
研究的核心在于如何处理这些复杂的神经信号,并将其解码为可理解的语言输出。为此,Card等人采用了一种先进的计算算法,专门用于处理与语音生成相关的神经活动特征。首先,电极阵列捕捉到的皮层活动信号会经过一系列的滤波和预处理步骤,以提取与语音相关的特定神经活动模式。接下来,计算算法通过对这些神经活动模式的分析,实时地将其转化为音素(即语音的基本单元)。最后,这些音素序列会被组合并与语言模型进行整合,从而生成完整的文本句子,并在计算机屏幕上显示出来。
在实验过程中,患者需要尝试发音或说出特定的单词和句子,而研究团队则通过植入的电极阵列实时捕捉和解码这些大脑活动,并将其转化为文本。这一过程不仅考验了算法的实时解码能力,还考验了其在处理大规模词汇表和复杂句子结构方面的表现。通过这种方式,研究团队能够有效评估语音神经假体在实际应用中的可行性和性能。
Card等人选择左侧中央前回作为主要研究区域,因为该区域与控制声道发音器官(如嘴唇、下巴、舌头和喉部)的运动密切相关。这一选择基于前人的研究成果,显示中央前回在言语运动控制中起到了至关重要的作用。此外,研究还特别关注了如何在不影响患者正常言语功能的情况下,最大限度地利用电极阵列捕捉到的信号,从而提高解码的准确性和速度。
2. Vansteensel等人的研究方法:
Vansteensel等人的研究对象是一名患有无音症的ALS患者。与Card等人的研究不同,Vansteensel等人使用了一种完全植入式的无线脑机接口设备。该设备的设计目标是帮助患者通过简单的点击命令来完成拼写和呼叫护理人员的操作,而不是直接恢复语音功能。
在这个研究中,设备的电极数量远少于Card等人使用的设备,仅包含一对电极。这些电极被放置在患者大脑的硬膜下,附着在颅骨的下侧,定位于大脑表面,而没有直接穿透大脑皮层。尽管如此,这些电极依然能够记录到足够的皮层信号,以支持患者进行基本的沟通操作。
为了实现这一目标,Vansteensel等人设计了一套复杂的信号处理系统,用于从记录的皮层信号中提取出能够驱动外部设备的特定信号模式。与Card等人研究中的实时语音解码不同,Vansteensel等人的研究更注重设备的长期稳定性和患者对设备的依赖性评估。患者在使用这套设备的过程中,通过点击命令进行拼写和呼叫,这些操作对于日常生活的基本沟通至关重要。
Vansteensel等人的研究特别强调了设备在长期使用中的表现。患者在前几年的使用中,设备表现良好,能够有效支持患者进行基本的沟通操作。然而,随着时间的推移,由于ALS引发的神经退行性变,设备的性能逐渐下降,这表明了疾病的进展对脑机接口性能的影响。
图1从大脑活动中解码语音或点击信号以恢复沟通。Card等人描述了获取家庭录音以解码患有言语障碍的人的语音(图A)。首先从植入前中央回的穿透式接口(包含256个电极)中获取皮层信号。然后对信号进行过滤,提取与预期语音相关的神经活动特征。计算算法将神经活动在每个时间点转换为特定的语音声音,称为音素。音素预测序列被组装并与语言的统计模型整合,以在屏幕上生成文本句子。ALS表示肌萎缩侧索硬化症。Vansteensel等人描述了一个患有言语不能的人,她配备了一个无线脑-计算机接口(BCI),用于家庭独立使用(图B)。从大脑表面的电极记录低通道数的皮层信号,用于点击和呼叫护理人员命令以及点击拼写。记录进行了8年,随着她逐渐变得虚弱,她依赖这种沟通脑-计算机接口。HFB表示高频带,LFB表示低频带。未来,沟通神经假肢将整合当前知识,以实现数十年的高性能和鲁棒性,目标是保持严重运动障碍者的自主性和社会参与。
研究结果分析:
1. Card等人的研究结果:
Card等人的研究展示了语音神经假体的一个新的性能里程碑。尽管患者的说话速度仅为每分钟32个单词,但在开放词汇表上的单词准确率非常高,错误率不到5%。这一结果表明,语音神经假体的性能已经接近现代语音识别系统的水平,这些系统通常需要经过大量的音频训练来实现高精度的文本转录。值得一提的是,这项研究还展示了语音神经假体在实际生活中的应用潜力,特别是在互动对话中的应用。
这一研究还证实了几个重要的发现。首先,在没有失语症的瘫痪患者中,言语运动信号可以成功地被解码。其次,利用语言模型来构建句子的算法是非常有效的,这意味着通过增加电极的数量,采集更多的语音信号,可以显著提高解码的性能。研究还发现,患者在解码过程中保留的部分语音功能可能对其较高的单词准确率和训练速度有帮助,但这也可能导致其说话速度较慢。
然而,这项研究的结果不能直接与以往针对完全无语音功能患者的研究相比较。例如,与过去研究中完全闭锁综合征患者相比,Card等人研究中的患者仍然具备一定的语音能力,因此该技术在更严重的瘫痪患者中的应用效果还有待进一步验证。这也意味着,尽管Card等人的研究展示了语音神经假体的显著进步,但要将这些结果推广应用于更广泛的患者群体,还需要进一步的研究和验证。
2. Vansteensel等人的研究结果:
Vansteensel等人的研究主要集中在脑机接口的长期稳定性和安全性上。研究结果表明,尽管设备的电极数量少且未直接穿透皮层,但它在多年的使用中依然表现出较强的稳定性,能够帮助患者进行基本的沟通操作。特别是在前几年的使用中,设备能够稳定地运行,支持患者通过点击命令完成日常生活中的基本沟通需求。
然而,随着ALS病情的进展,患者的神经功能逐渐退化,设备的性能也开始下降。这一现象表明,ALS等神经退行性疾病的进展会对脑机接口的长期性能产生显著影响。尽管如此,研究团队通过这项研究积累了大量关于设备长期使用表现的数据,这些数据对未来脑机接口技术的发展具有重要的参考价值。
这项研究还提出了关于如何设计更加稳定和持久的脑机接口设备的思考。由于目前的设备在长期使用中仍面临许多挑战,例如电极的生物相容性和长期稳定性问题,未来的研究可能需要探索新的材料和技术,以提高设备的稳定性和使用寿命。此外,研究还指出,未来的脑机接口可能需要与大脑中其他受到较少退化影响的区域进行连接,这样的接口设计虽然复杂,但可能更适合长期使用。
Vansteensel等人的研究还强调了患者对设备的依赖性。在研究的后期,患者逐渐变得更加依赖设备进行沟通操作,尽管设备的性能有所下降,但仍能为患者提供一定的帮助。这表明,脑机接口在改善患者生活质量方面具有重要潜力,尤其是在那些已经失去其他沟通手段的患者中。
结论展望:
Card等人和Vansteensel等人的研究为脑机接口技术在恢复沟通功能方面的应用提供了有力的支持。Card等人的研究展示了语音神经假体在解码和语音恢复方面的显著进步,而Vansteensel等人的研究则提供了关于脑机接口长期使用表现的重要数据。两项研究共同展示了脑机接口技术的巨大潜力,特别是在帮助瘫痪患者恢复基本沟通能力方面。
然而,这些研究也揭示了当前技术的局限性。例如,电极的长期稳定性和设备的生物相容性问题仍然是制约技术进一步发展的关键因素。此外,如何提高设备的解码性能,使其能够适应不同患者的需求,仍然是未来研究的一个重要方向。
未来,理想的脑机接口设备应能够在长期(至少十年)内提供高性能的解码和稳定性。这意味着设备必须具备完全植入的能力,并且能够无线传输信号。此外,设备还需要具有足够的带宽来捕捉对解码至关重要的皮质信号,同时还要易于植入和移除,不会对大脑造成损伤。为了实现这些目标,许多学术和商业团队正在不断努力,探索新材料、新技术以及新的信号处理算法。
总的来说,脑机接口的发展不仅展示了科技的进步,更为那些因疾病失去沟通能力的患者带来了新的希望。随着技术的不断进步,我们有理由相信,未来脑机接口技术将能够帮助更多的患者恢复自然的沟通功能,改善他们的生活质量,最终实现科技与人类福祉的双重目标。
仅用于学术分享,若侵权请留言,即时删侵!
加入社群
欢迎加入脑机接口社区交流群,
探讨脑机接口领域话题,实时跟踪脑机接口前沿。
加微信群:
添加微信:RoseBCI【备注:姓名+行业/专业】。
加QQ群:913607986
欢迎来稿
1.欢迎来稿。投稿咨询,请联系微信:RoseBCI
点击投稿:脑机接口社区学术新闻投稿指南
2.加入社区成为兼职创作者,请联系微信:RoseBCI
一键三连「分享」、「点赞」和「在看」
不错过每一条脑机前沿进展