​利用卷积神经网络学习脑电地形图表示进行分类

点击上面"脑机接口社区"关注我们

更多技术干货第一时间送达

脑电图(EEG)地形图表征(Electroencephalography topographical  representation, ETR)可以监测区域大脑活动,是一种可以用于探索皮层机制和联系的技术。然而,如何找到一种鲁棒的方法来支持多目标对象、多通道的具有低信噪比的高维EEG数据是一个挑战。为了解决这一问题,厦门大学、海西研究院泉州装备制造研究所、华中师范大学以及云南民族大学等多所研究机构的研究人员联合提出了一种新的ETR能量计算方法,用于使用卷积神经网络学习大脑活动的EEG模式。它能够在一个通用的学习模型中识别多个对象。具体而言,研究人员在实验中使用里来自2008年脑机接口(BCI)竞赛IV-2a的数据集进行五类分类,其中包含四个运动想象动作和一个放松动作。在该项研究中,提出的分类框架的平均准确率比最好的分类方法高10.11%。另外,研究人员通过对ETR参数优化的研究,得到了一种用于BCI应用的用户界面,并实现了一种实时优化方法。

本研究的主要过程涉及生成ETR特征图并使用它们来训练CNN模型,从而实现对不同目标对象中多个动作的准确分类。如图1所示,首先,对每个EEG训练或评估时段的数据进行分析以获得事件的相应位置和持续时间,并记录每个事件的类别。之后根据事件,获得了代表连续数据的时间点试验集的epoch。然后选择时间段和频带以计算每个通道值以生成ETR。最后,基于CNN,输入ETR的空间功率关系以通过卷积层提取一些特定特征。

图1基于运动想象的多类、多目标对象EEG信号分类方法的流程图

上图为基于运动想象的多类、多目标对象EEG信号分类方法的流程图:

(1)从多通道脑电图信号中提取作为事件、epoch和脑电图时间序列值;

(2)将训练标签和测试标签按照事件、动作和时间域(这是分类的预测参数之一)进行标记后生成ETR map;

(3)将ETR map和分类标签输入循环卷积网络进行学习和分类;

(4)建立多种训练和分类方案,分析其优缺点;

(5)调整参数,包括特征值生成和机器学习,寻找最优分类器;

(6)找到最优分类并输出。

考虑到数据存储,操作速度以及不想改变的电极实际能量分布,研究人员将地形图绘制为生成的尺寸大小为200 x 200像素的图像。为了比较每个频段的地形图组,在生成图像之前,根据功率值统一功率条,如下表所示。

上表列出了由六种不同算法得到的功率条值。这些值生成不同类型的ETRs,如下图所示。

图2.使用六种不同的算法从相同频段的相同EEG数据生成的地形图

网络架构

研究人员在该项研究中设计了ETRCNN网络,其网络架构如下:

图3. ETRCNN架构概述

如上图所示,网络由四个部分组成。

第一部分为:一个输入层将ETR数据结构标准化;

第二部分为,三个CNN层包括整流线性单元(ReLU)和最大池化层;

第三部分为,Flatten层将多维数据”拍平”为一维;

第四部分,分类结构包括两个全连接层,具有一个sigmoid激活函数和一个softmax输出层,最终可以获得五类的判断权值。

网络由每一层中的一个或几个map(一般只feature map,叫特征图)组成。每个map代表经过卷积和池化的得到的层实体,它适合于从输入数据中学习特征。然后,作为下一层的输入,最大池化层最终将连接到全连接层,在此处通过softmax计算完成分类。层的关键参数详细描述如下:

  • 输入归一化:为了安全起见,根据宽度和高度参数对输入进行检查和调整大小。考虑到图像的深度一般为3,CNN的输入是一个矩阵集,其中每个数据的张量形状为64×64×3。因此,训练ETRs包含了9个受试者的训练数据集和6个时间间隔。CNN学习了六种训练模型,然后找出最佳的模型。

  • 模型架构:ETRCNN学习框架采用了一个输入层,三个ReLU和最大池化的CNN层,每个层中有两个完全连接的层,其后是一个dropout层,以及一个softmax输出层,用于分类(见图3)。

分类器选择:在ETRCNN框架中,根据运行数据结构经验选择算法1的内部参数和算法策略。当模型的训练精度和验证精度高于设置的参数,并且验证损失低于设置的参数时,会将当前模型复制到文件夹中。根据判断策略以及每个事件的epoch,生成了一组ETR图像然后利用训练好的模型进行预判断。然后,对五类中的预先确定量进行统计,以数量最大的先验作为最终决策值(见算法1)。

实验与分析

本文利用2008年BCI竞赛IV-2a脑电数据集对所提方法进行了验证。它由9个受试者的脑电图数据组成,这些受试者执行四项运动想象任务,即在提示睁眼、闭眼和动眼任务后对左手、右手、双脚和舌头运动的想象。如图4所示,在每个会话开始时,进行三次EOG试验,随后进行六次MI试验,图5 为2008 BCI竞赛IV-2a的22个电极对应于国际10-20系统。

图4

图5 10-20系统

每个受试者的训练集(如表3所示)和测试集(如表4所示).

对来自2008年BCI竞赛IV-2a数据集的每个受试者,在9 ~ 30Hz时每1.0 sETR与9 ~ 20Hz时每1.0 s ETR进行分类精度比较。两种形状的ETR的一些实例如图6所示。在相同条件下和不同条件之间存在一些实例的变体。很明显,单通道输入数据失去了电极之间的空间关系。然而,每个电极的时序信息被保留。

图6 在2008年BCI IV-2a数据集中,来自受试者3的9 ~ 30Hz和9 ~ 20HzETR的几个实例。

在1.0 s的窗口中,这三个情况分别从右、舌和脚的试验中产生两个形状

为了便于比较两个波段的ETR分类准确率,我们将这些ETRs输入到CNN中,在同一受试者的同一时间窗口对模型进行训练。图7显示了两种不同频段模型下的分类性能。由此可见,在9 ~20 Hz频段产生的模型性能要高于在9 ~30 Hz频段产生的模型性能。

图7.在9〜30 Hz和9〜20 Hz ETR中的分类性能评估。

x轴表示分类器的迭代次数,y轴表示分类精度。

研究人员还在ETRCNN的每个卷积层中提取中间特征,并进行了可视化,如下图所示,左边和右边的子图分别来自于2008年BCI竞赛IV-2a数据集中受试者9的左手和右手运动的MI;这些信号从9-20 Hz的频带过滤,并分割为1 s的时间窗口大小。

图11 ETRCNN在每个卷积层中提取中间特征可视化

通过分析输出层神经元的最大激活量,可以发现对应于某一类别的最具代表性的原型样本(图12)。激活最大化和生成模型的组合成功捕获了与每个类别相对应的中心特征表示。从图12中可以看到,与右手MI相比,左手MI的最明显的表示区域在感觉关联区域的右手侧。另外,脚和舌MIs集中在初级运动皮层,初级体感皮层和感觉关联区域的中间区域,并且舌MI的反射区域比足MI的反射区域宽。这些结果证明,将激活最大化与生成模型相结合的方法可以生成更现实和可解释的原型样本。这对于下一步构建高质量的模型库非常有帮助。

图12 通过ETRCNN模型在每个MI动作中生成具有激活最大化的判别原型。

蓝色线圈标记最重要的最大特征区域。

总结

研究人员在本文中提出了一种新的ETR能量计算方法,用于使用卷积神经网络学习大脑活动的EEG模式。它能够在一个通用的学习模型中识别多个对象。具体而言,研究人员在实验中使用里来自2008年脑机接口(BCI)竞赛IV-2a的数据集进行五类分类,其中包含四个运动想象动作和一个放松动作。在该项研究中,提出的分类框架的平均准确率比最好的分类方法高10.11%。

参考信息

Learning EEG topographical representation for classification via convolutional neural network

文章来源于网络,仅用于学术交流,不用于商业行为

若有侵权及疑问,请后台留言,管理员即时删侵!

更多阅读

如何对单手和双手协同运动方向进行神经表征和解码?北理工研究团队给出了相关方案

脑科学研究的三大发展方向

Nature子刊 | 研究人员对特定行为的大脑信号模式进行分离和解码

【基于深度学习的脑电图识别】数据集篇:脑电信号自动判读的大数据

脑机接口拼写器是否真的安全?华中科技大学研究团队对此做了相关研究

脑机接口和卷积神经网络的初学指南(一)

脑电数据处理分析教程汇总(eeglab, mne-python)

P300脑机接口及数据集处理

快速入门脑机接口:BCI基础(一)

如何快速找到脑机接口社区的历史文章?

脑机接口BCI学习交流QQ群:515148456

微信群请扫码添加,Rose拉你进群

(请务必填写备注,eg. 姓名+单位+专业/领域/行业)

长按关注我们

欢迎点个在看鼓励一下

​​​​​​​

用Python连接EEG(脑电图)设备有许多功能。以下是其中几个常见的功能: 1. 数据采集:Python可以通过串口或其他连接方式与EEG设备通信并接收到脑电图数据。可以使用PySerial库来实现与串口的通信,从而获取EEG数据。获取到的数据可以用于后续的分析和处理。 2. 数据预处理:Python提供了丰富的数据处理和分析库,可以对采集到的EEG数据进行预处理。这包括滤波、伪迹去除、噪声消除、时域或频域分析等等。可以使用NumPy、SciPy和Pandas等库来完成这些任务。 3. 数据可视化:Python可以将EEG数据可视化为功能图。使用Matplotlib、Plotly、Seaborn等库,可以绘制波形图、频谱图、瀑布图等,直观显示脑电活动。这有助于分析和理解脑电图数据。 4. 特征提取:Python可以通过特征提取算法从脑电图数据中提取有用的信息。这些特征可能包括频谱能量、频带比、脑电活动的时域和频域特征等等。这些特征可以用于分类、识别脑电活动模式,进一步研究脑电相关问题。 5. 信号处理算法:Python的库提供了许多信号处理算法,可以用于处理EEG数据。例如,可以使用Scipy的滤波器设计与应用函数进行高通、低通、带通等滤波操作。此外,还可以使用各种频谱分析方法(如傅里叶变换、小波变换等)对EEG数据进行分析。 总之,Python是一个功能强大的编程语言,提供了各种库和工具,可以帮助我们连接EEG设备并进行数据处理、分析和可视化。这些功能可以用于科学研究、医学诊断、脑机接口等领域。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑机接口社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值