Raspberry Pi 支持开源脑机接口

030226694dca383f12c95eb06f280001.png

脑机接口听起来很科幻,但实际上已经慢慢进入普通人的生活了。

有许多不同的方法可以用来检测和解释人脑中的电活动,以便它可以用来控制其他外部设备,比如计算机。

通常脑机接口设备的开发和应用是高校研究部门和像谷歌实验室等大公司的领域,但 Ildar Rakhmatulin 和 Sebastian Volkl 的近日在arXiv上分享了一篇论文,论文中提出普通人也能用的脑机接口设备,利用Raspberry Pi(树莓派)来替代那些超昂贵的设备。

d49edc6dd095472a2fb077d4ff5b219e.png

设备的一般视图

Rakhmatulin在这个领域有过经验,他使用 Raspberry Pi 3 B+ 和相机设计了一个用于击落蚊子的激光炮塔,他在俄罗斯南乌拉尔国立大学研究 BCI,而 Volkl 在人工智能和神经网络领域工作。他们共同发起了hackerBCI,旨在为神经科学项目和实验提供方便。

df56ecacefc5279fa39e946d6b536198.png

设备使用示意图

他们的Pi项目,PiEEG,使用C, C ++和Python来读取多达8个实时脑电图(EEG)信号,这些信号是通过放置在受试者所戴的帽子中的电极从大脑中收集的。在此基础上,两人表示未来有更多的用例将被展现。外骨骼的控制也是建议的用途之一。

7bff2e1bf027b916e31d0250222c3879.png

d94fb39f5f481b2ffacc28f9386b36bc.png

PiEEG 上的 EEG 信号咀嚼和眨眼(实时)

PiEEG板安装在Raspberry Pi 3上,根据全尺寸HDMI端口判断,作为HAT (Pi 4也可以使用),并通过GPIO引脚连接。在它工作之前有一些严格的要求,包括与主电源产生的噪声隔离,但幸运的是,有很多开源软件可用于信号处理。

社区现在组建脑机接口极客社群,欢迎你加入

【联系微信:RoseBCI,备注:脑机极客】助手看微信有延迟,故回复不及时,望见谅

加入条件:

1.极度热爱脑机接口;

2.你是一名拥有极客Geek精神的BCI Geek(对脑+机有偏执的爱好);

3.有一定的代码能力、硬件知识,最主要的是愿意埋头学习新技能、新知识。

脑机接口知识星球:

即时资讯,脑机观点,脑机行业讯息,脑机最新技术,脑机咨询...会在该星球分享。

同时,它是链接人与人的一个圈子。关注脑机接口+X 领域的伙伴们能在这里找到或分享脑机观点、信息,创业领域等,寻找志同道合伙伴的一个渠道。

513168809bd488c18a8f7fdac64de187.png


仅用于学术交流,不用于商业行为,若有侵权及疑问,请后台留言,管理员即时删侵!

4cca2fa0a61c4f09af602ac48f765d94.png

更多阅读


2021年度脑机接口重大事件和进展汇总

“缸中之脑”会打乒乓球了!黑客帝国成真了吗?

基于加权投票的尖峰神经活动数据高效解码

可扩展且侵入性最小的脑机接口平台

逆天改命,机械飞升:渐冻症科学家将自己改造成了「半机械人」

科学家实现脑机接口即插即用控制

脑机接口新进展!意念控制机器人离实现更近了一步!

连续低频脑电图解码手臂运动,实现机械手臂的闭环自然控制

人类、动物和人工智能意识的新理论

新型传感器将改变大脑控制的机器人技术


c95675bf0622863a4646f81dfc456201.png

b92a7704c7c1b3570cd782406955eb65.png

点个在看祝你开心一整天!

<think>好的,用户想了解关于脑机接口控制小车的实现方案和开发教程。首先,我需要明确脑机接口(BCI)的基本原理,通常涉及信号采集、处理、特征提取和分类控制。接下来,要考虑如何将这些信号转化为小车的控制指令。 现有的类似项目可能有使用EEG设备,比如NeuroSky或OpenBCI,这些设备相对容易获取,适合开发。然后需要处理脑电信号,可能需要机器学习算法来识别特定的模式,比如眨眼、注意力水平等。用户可能需要教程,所以得推荐具体的步骤,比如使用Python的库如MNE或PyEEG处理信号,结合Arduino或树莓派控制小车。 还要考虑实时性,脑电信号处理需要低延迟,可能需要优化算法。另外,硬件部分,小车的控制通常通过微控制器实现,比如Arduino或ESP8266,与电脑或手机通信。结合之前的引用[1]和[2],用户可能已经有自动驾驶小车和机械臂控制的经验,可以借鉴这些项目的通信协议和控制方法。 需要分步骤说明:信号采集、处理、模型训练、指令发送、小车执行。同时,要确保教程资源容易获取,比如推荐开源库、GitHub项目或详细的博客教程。还要提醒可能遇到的挑战,比如信号噪声、分类准确率等,并给出优化建议。</think>### 脑机接口控制小车实现方案 #### 1. 系统架构 脑机接口控制小车系统包含以下核心模块: - **脑电信号采集**:使用EEG设备(如OpenBCI、NeuroSky MindWave)实时采集脑电信号[^1] - **信号处理与特征提取**:通过数字滤波(如5-30Hz带通滤波)和时频分析提取特征(如α波、β波功率) - **意图识别**:采用机器学习算法(如SVM、CNN)分类特定脑电模式(如注意力值、眨眼动作) - **控制指令生成**:将分类结果映射为小车运动指令(前进/后退/转向) - **通信与执行**:通过蓝牙/WiFi将指令发送至车载控制器(如树莓派、Arduino) #### 2. 关键技术实现 **信号采集示例(Python+OpenBCI)**: ```python from pyOpenBCI import OpenBCICyton def raw_data_handler(sample): print(sample.channels_data) # 输出8通道原始EEG数据 board = OpenBCICyton(port='COM3') board.start_stream(raw_data_handler) ``` **特征提取(时域分析)**: $$ P_{\alpha} = \frac{1}{N}\sum_{n=0}^{N-1}|X(f_{\alpha})[n]|^2 $$ 其中$f_{\alpha}$为8-13Hz频段,$X(f)$为傅里叶变换结果 **控制指令传输(Arduino示例)**: ```arduino void setup() { Serial.begin(115200); pinMode(IN1, OUTPUT); // 电机驱动引脚 } void loop() { if(Serial.available()){ char cmd = Serial.read(); if(cmd == 'F') digitalWrite(IN1, HIGH); // 前进 } } ``` #### 3. 开发教程推荐 1. **基础教程**: - 《基于OpenBCI的脑机接口开发入门》(CSDN搜索) - Arduino脑控小车项目[GitHub: BCI-Car-Control] 2. **进阶实现**: - 使用TensorFlow Lite部署轻量化分类模型到树莓派 - 结合ROS系统实现多模态控制[^2] 3. **参考案例**: - 注意力控制小车速度:注意力值>70%时加速,<40%时刹车 - 眨眼检测实现转向:左/右单眨眼触发转向指令 #### 4. 技术挑战与解决方案 | 挑战 | 解决方案 | |---------------------|-----------------------------| | 信号噪声干扰 | 自适应滤波+ICA去伪迹 | | 分类准确率低 | 数据增强+迁移学习(EEGNet) | | 系统延迟过高 | 边缘计算+指令预测算法 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑机接口社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值