快速幂模板

本文介绍了快速幂算法,一种在大整数环境下高效求幂的技巧。通过将指数表示为二进制形式,将原本的多次乘法操作减少到对数级别。文章提供了C++代码实现,并给出了一个具体的例子来解释算法过程。最后,应用快速幂解决了一个模运算问题。
摘要由CSDN通过智能技术生成

快速幂

快速幂用于求 a k a^k ak,k比较大的情况。当需要对答案取模时,也符合运算律。

快速幂的思想就是把k看成一个二进制数,原来相当于乘k次a,现在乘的次数变成 l o g 2 ( k ) log_2(k) log2(k)

比如我求 1 0 11 10^{11} 1011 ,11 = 101 1 ( 2 ) 1011_{(2)} 1011(2)

我们每次进行lowbit操作,同时注意此时a的权值变化,代码如下

#include<bits/stdc++.h>
using namespace std;
int n,m,k,x;
int ksm(int a,int b)
{
	int r=1;
	while(b)
	{
		if(b&1){
			r*=a%n;//注意乘的a是在变的,因为每个“1”权值不同
			r%=n;
		}
		a*=a%n;//权值变化
		a%=n;
		b>>=1;
	}
	return r%n;
}
int main()
{
	cin>>n>>m>>k>>x;
	int y=ksm(10,k);
	cout<<(x+y*m)%n<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值