快速幂
快速幂用于求 a k a^k ak,k比较大的情况。当需要对答案取模时,也符合运算律。
快速幂的思想就是把k看成一个二进制数,原来相当于乘k次a,现在乘的次数变成 l o g 2 ( k ) log_2(k) log2(k)。
比如我求 1 0 11 10^{11} 1011 ,11 = 101 1 ( 2 ) 1011_{(2)} 1011(2)
我们每次进行lowbit操作,同时注意此时a的权值变化,代码如下
#include<bits/stdc++.h>
using namespace std;
int n,m,k,x;
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1){
r*=a%n;//注意乘的a是在变的,因为每个“1”权值不同
r%=n;
}
a*=a%n;//权值变化
a%=n;
b>>=1;
}
return r%n;
}
int main()
{
cin>>n>>m>>k>>x;
int y=ksm(10,k);
cout<<(x+y*m)%n<<endl;
return 0;
}