2019.1.5

today's learning

一、DOG(Difference of Gaussian)金字塔

1.1理论部分

DOG(Difference of Gaussian)金字塔

简述:DOG金字塔由高斯金字塔推算得出

高斯金字塔:

1、对图像进行高斯模糊,公式为对于参数σ,在Sift算子中取的是固定值1.6。

2、 每组的平滑系数:每组中L层对应的平滑系数分别为:0,σ,kσ,k^2σ,k^3σ……k^(L-2)σ。

3、不同组的尺度大小:第一组为将原图扩大两倍,第二组为第一组倒数第三层的1/2大小。组数总共O组,每组L层。

DOG金字塔:

高斯金字塔共O组,每组L层,则DOG金字塔共O组,每组L-1层。即DOG中的第O组的L层为高斯金字塔中的第O组的L+1层-L层。

最后:

对这些DOG图像进行归一化,可有很明显的看到差分图像所蕴含的特征,并且有一些特征是在不同模糊程度、不同尺度下都存在的,这些特征正是Sift所要提取的“稳定”特征:

来自:https://blog.csdn.net/dcrmg/article/details/52561656

 

©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页