小白学习TensorRT6.0.1.5----安装(一)

最近正好要学习CV模型的部署,TensorRT是一个非常不错的选择,搞深度学习的第一步永远是配置环境,而且永远都不是一帆风顺的…

1 环境

1.Linux 服务器 Ubuntu16.04.6
2.CUDA 10.1 (只有TensorRT 6.0.1.5可以匹配)
3.cudnn 7.6.3
4.python 3.6
更准确的可以看官方安装文档,非常详细

2 安装步骤

  • 下载TensorRT,如果没有NVIDIA账号可以用邮箱注册一个,以后用的还挺多。点开链接如下图所示
    插图
  • 下载的格式有deb,tar,xxx三种格式,因为服务器我没有管理权限,是用户级别的,所以选择tar格式
    下载图片在这里插入图片描述
    1.创建环境(peach 是我自己起的名字,可以根据自己的需求起名)如图所示
conda create -n peach python=3.6
conda activate peach

在这里插入图片描述

2.解压文件夹

  • 如果你有管理员权限直接到对应的文件夹下解压tar
tar xzvf TensorRT-6.0.1.5.Ubuntu-16.04.x86_64-gnu.cuda-10.1.cudnn7.6.tar.gz
  • 如果是用户级的需要在windows在解压,如果直接右键解压会如下警告,最后解压完的文件会丢失文件
    在这里插入图片描述
  • 用户级的解压最好在cmd中使用管理员权限打开
    -找到压缩文件对应的文件夹下
cd/d F:/open
  • 解压文件夹
start winrar x -y TensorRT-6.0.1.5.Ubuntu-16.04.x86_64-gnu.cuda-10.1.cudnn7.6.tar.gz

在这里插入图片描述
解压后的文件如图所示
在这里插入图片描述
3.安装TensorRT官方文档
将解压的文件移动到自己建的文件夹下,如果是在linux系统下解压的文件可以忽略这一步

  • 查看TensorRT-6.0.1.5中有哪些文件
  • cd zyd/TensorRT-6.0.1.5
  • ls
    在这里插入图片描述
    4.添加路径到环境变量中(第二句命令根据自己的文件位置更改)
  • vim ~/.bashrc
  • export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/tukrin/zyd/TensorRT-6.0.1.5/lib
  • source ~/.bashrc

5.安装 TensorRT的wheel文件

  • cd TensorRT-6.0.1.5/python
  • pip install tensorrt-6.0.1.5-cp36-none-linux_x86_64.whl
  • cd TensorRT-6.0.1.5/uff
  • pip install uff-0.6.5-py2.py3-none-any.whl
  • cd TensorRT-6.0.1.5/graphsurgeon
  • pip install graphsurgeon-0.4.1-py2.py3-none-any.whl
    6.验证TensorRT是否安装成功
  • python
  • import tensorrt
  • print( tensorrt.__version__)
    在这里插入图片描述

3 出现的错误

在这里插入图片描述
在这里插入图片描述
解决办法:出现问题的原因要么是环境变量没有添加完成,要么是CUDNN连接建立问题。
我的是环境变量的问题

  • vim ~/.bashrc
  • 根据自己cuda的路径改下面三行指令,不要照抄
export PATH=/home/tukrin/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/home/tukrin/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/home/tukrin/cuda

添加路径的界面
然后输入指令保存退出,不会vim看一下这个

  • source ~/.bashrc 让路径立即生效
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值