Caffe源码解读:防止梯度爆炸的措施-梯度裁剪

本文介绍了防止深度网络中梯度爆炸的策略——梯度裁剪,特别是关注Caffe框架的实现。通过在梯度L2范数超过设定阈值时进行标准化处理,有效控制梯度的大小,确保模型训练稳定性。
摘要由CSDN通过智能技术生成

       梯度裁剪是一种在非常深度的网络(通常是循环神经网络)中用于防止梯度爆炸(exploding gradient)的技术。

执行梯度裁剪的方法有很多,但常见的一种是当参数矢量的 L2 范数(L2 norm)超过一个特定阈值时对参数矢量的梯

度进行标准化,这个特定阈值根据函数:新梯度=梯度 * 阈值 / 梯度L2范数

                         new_gradients = gradients * threshold / l2_norm(gradients)。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值