准确率、召回率和F值的关系

        在信息检索、统计分类、识别、预测、翻译等领域,两个最基本指标是准确率和召回率,用来评价结果的质量。

        准确率Precision),又称“精度”、“正确率”、“查准率”,表示在检索到的所有文档中,检索到的相关文档所占的比例。

        召回率Recall),又称“查全率”,表示在所有相关文档中,检索到的相关文档所占的比率。

        两者的公式为:

        准确率 = 检索到的相关文档数量 / 检索到的所有文档总数

        召回率 = 检索到的相关文档数量 / 系统中所有相关文档的总数

        图示如下:


        举例来说:一个数据库中有500个文档,其中有50个文档符合定义的问题。系统检索到75个文档,其中只有45个文档符合定义的问题。

        准确率 = 45 / 75 = 60%

        召回率 = 45 / 50 = 90%

        若将所有文档都检索到,这些指标有何变化:

        准确率 = 50 / 500 = 10%

        召回率 = 50 / 50 = 100%

        可见,准确率和召回率是相互影响的,理想情况下肯定是两者都高,但是一般情况下准确率高,召回率就低;召回率高,准确率就低;如果两者都低,那肯定是什么环节有问题了。

        比如,在检索系统中,如果希望提高召回率,即希望更多的相关文档被检索到,就要放宽“检索策略”,便会在检索中伴随出现一些不相关的结果,从而影响到准确率。如果希望提高准确率,即希望去除检索结果中的不相关文档时,就需要严格“检索策略”,便会使一些相关文档不能被检索到,从而影响到召回率。

        针对不同目的,如果是做搜索,那就是优先提高召回率,在保证召回率的情况下,提升准确率;如果做疾病监测、反垃圾,则是优先提高准确率,保准确率的条件下,提升召回率。


        那么,在两者都要求高的情况下,如何综合衡量准确率和召回率呢?一般使用F值

        F-Measure是准确率(P)和召回率(R)的加权调和平均。公式为:

       当参数α=1时,就是最常见的F1,即

       可见F1综合了P和R的结果,可用于综合评价实验结果的质量。

 

       参考资料:

       http://blog.csdn.net/taohuaxinmu123/article/details/9833001

http://blog.csdn.net/wangzhiqing3/article/details/9058523

http://baike.baidu.com/link?url=ztYa_FDxGrdW-Rp22-Rd0T-4nK-elp-dZEcPl0hCK7g7A2AZtwnokUbwwYLO7Xld4-FL6VxEoIizWwMBc2E1R_

 


评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值