线性代数学习-矩阵在电流计算中的应用

目录

用矩阵表示电流图

节点电势的应用

边上电流的求解

参考资料



用矩阵表示电流图

        考虑这样的一个电流走向图:

        将这张电流图用矩阵的方式表示,1-4列表示图中的1-4号节点,1-5行表示编号为1-5的边,得到如下的矩阵P:

P = \begin{bmatrix} -1 &1 & 0 &0 \\ 0& -1 &1 &0 \\ -1& 0 & 1 &0 \\ -1& 0 &0 &1 \\ 0& 0 &-1 &1 \end{bmatrix}

        从这个矩阵中不难发现一些奇妙的特征:例如,节点1,2,3构成了一个无向图的回路,因此矩阵P前三行的秩不足3。可以证明,任何有回路的子图生成的矩阵P,其秩都严格小于其节点数。


节点电势的应用

        设每个节点的电势为 x_ii=1,2,3,4 。如果节点电势之间均无电势差,则可得到方程:

P x=0

        即:

\begin{bmatrix} -1 &1 &0 & 0\\ 0&-1 &1 &0 \\ -1& 0& 1&0 \\ -1& 0 &0 &1 \\ 0 & 0& -1&1 \end{bmatrix}\cdot \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}=\begin{bmatrix} 0\\ 0\\0 \\ 0 \end{bmatrix}

        求解后得基础解系为:

       x=c\begin{bmatrix} 1\\ 1 \\ 1 \\ 1 \end{bmatrix}

        根据此结果可知,如果该电路中没有电流,只有一类情况——各点电势相等。解空间的维数为1,而原矩阵有4列,因此可计算出矩阵P的秩为3。

        考虑节点之间有电势差的实际情况,即

Px=b

        设此方程的一个特解为 x^{*},则这个方程的通解为

x=x^{*}+c\begin{bmatrix} 1\\1 \\ 1 \\ 1 \end{bmatrix}

        但很显然,在求解电路时,我们并不希望答案是多解的。因此,对于这种电路,我们通常将节点4接地,令其电势为0。从物理的角度而言,这种方法其实是规定了一个电势零点,让整个体系的电势得以衡量;从矩阵的角度而言,其实是让方程 Px=0x_4=0,矩阵P从4列变成了三列,因此 Px=0 变成了一个有唯一解的方程,所以方程 Px=b 就不存在通解了。


边上电流的求解

        基尔霍夫电流定律(Kirchoff's Current Law),也称节点电流定律,是指在电路的任意一个节点上,在任一时刻,其流入的电流和等于其流出的电流和。这个定律同样可以用矩阵的方式来描述。将上述求得的矩阵P转置,考虑方程组 P^{T}y=0,即

\begin{bmatrix} -1 &0 &-1 &-1 &0 \\ 1& -1 & 0&0 &0 \\ 0 & 1& 1& 0&-1 \\ 0& 0 &0 & 1 & 1 \end{bmatrix}\begin{bmatrix} y_1\\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} =\begin{bmatrix} 0\\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}

        y 为图中边编号为1-5的电流强度。将这个矩阵方程化为方程组的形式,得

\left\{\begin{matrix} -y_1-y_3-y_4=0\\ y_1-y_2=0 \\ y_2+y_3-y_5=0 \\ y_4+y_5=0 \end{matrix}\right.

        这4个方程,其实就是 1 ,2 ,3 ,4 四个节点基尔霍夫电流定律的表达形式。这个方程组非常好求解。首先判断其基础解系的维数,是P转置的列数减去P转置的秩,为2。求解该方程组,得到基础解系为

\begin{bmatrix} 1\\1 \\ -1 \\ 0 \\ 0 \end{bmatrix} ,\begin{bmatrix} 0\\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}

        容易发现,其实这两个解正好对应电路中的两个环路 ①②③ 和 ③④⑤ 。为什么没有环路 ①②④⑤ 呢?从线性代数的角度来看,后者其实是前两个环路的一个线性组合,因此并不被计入基础解系。从这个结果的物理意义可以推出,基尔霍夫定律的本质是每有一个环路,电路的自由度就增加一度。通过线性代数的方法,可以让我们对基尔霍夫定律有另一个角度的认识。


参考资料

麻省理工学院,线性代数公开课

  • 4
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值