线性代数学习笔记11

本文探讨了图的拓扑结构如何与线性代数中的矩阵关联,特别是在电路图的背景下。关联矩阵用于描述图的节点和边,矩阵的零空间和行空间分别对应于电势差为零的结点和不形成回路的边组合。通过欧拉公式和基尔霍夫电流定律,解释了矩阵的零空间和左零空间的几何意义。
摘要由CSDN通过智能技术生成

这里第十二课-图和网络

图、网络与线性代数的关系

之前学习的课程中,接触到的向量,矩阵都是我们自己假定的,但是实际应用中,矩阵的来源是有实际意义的,如研究图的拓扑结构时,我们用到的关联矩阵。

如图所示的拓扑结构:
在这里插入图片描述
上面的图结构中,一共有4个结点,5条边,如果转化为关联矩阵(5* 4),为:
[ − 1 1 0 0 0 − 1 1 0 − 1 0 1 0 − 1 0 0 1 0 0 − 1 1 ] { \left[ \begin{array}{ccc} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ \end{array} \right ]} 10110110000110100011

首先,我们观察该矩阵,发现
行 1 + 行 2 = 行 3 行 1 + 行 2 = 行3 1+2=3
所以前三行线性相关,然后观察图结构可知,前三行可以构成一个回路。

  • 如果我们将各个结点的值,看作是一个电势的话,可知 AX = 0 代表的就是使得所有的电势差为0的各个结点电势,即 矩阵A 的零空间,我们可以通过直观求解这个矩阵,当然也可以从含义出发进行分析,只有各个结点的电势都想同时,才可以,所以该零空间的基为 [ 1 1 1 1 ] { \left[ \begin{array}{ccc} 1 \\ 1 \\ 1 \\ 1 \\ \end{array} \right ]} 1111
    所以有该空间的维度为1,所以有 r a n k = n − C ( N ( A ) ) = 3 rank = n -C(N(A)) = 3 rank=nC(N(A))=3
    这里,应该注意,零空间的维度为1,应该是不变的

  • 同理,我们来分析该矩阵的左零空间,即A 转置的零空间,从矩阵出发,我们有该空间维度 为
    d i m ( C ( N ( A T ) ) ) = m − r a n k = 5 − 3 = 2 dim(C(N(A^T))) = m - rank = 5 - 3 = 2 dim(C(N(AT)))=mrank=53=2
    其实,此时我们可以理解,左零空间的向量即为表示各个边上面的电流,是满足 流 出 = 流 入 流出 = 流入 =
    所以我们直接零 第一个为 1,看图来进行求解,可以得到
    [ 1 1 − 1 0 0 ] { \left[ \begin{array}{ccc} 1 \\ 1 \\ -1 \\ 0\\ 0 \end{array} \right ]} 11100
    我们发现此时,刚好可以构成一个回路,即第一个回路,
    由此设想,另外一个基,就可以是表示另外一个回路,
    [ 0 0 1 − 1 1 ] { \left[ \begin{array}{ccc} 0 \\ 0 \\ 1 \\ -1\\ 1 \end{array} \right ]} 00111
    即两个即,表示两个不想关的回路

  • 同理,我们来分析该矩阵的行空间,当然如果直接数学来分析,我们可以很快给出答案
    d i m ( R ( A ) ) = r a n k = 3 dim(R(A)) = rank = 3 dim(R(A))=rank=3
    分析行空间,维度表示,有3个线性无关的行向量,即不能组成回路的边的最大数目,为3,我们发现,比如 1,2,4就可以组成一个非回路,但是超过3,就不行,当然也不是任意三个,因为1,2,3就可以组成回路


  • d i m ( N ( A T ) ) = m − r dim(N(A^T)) = m - r dim(N(AT))=mr
    => d i m ( N ( A T ) ) = m − ( n − d i m ( N ( A ) ) ) dim(N(A^T)) = m - (n-dim(N(A))) dim(N(AT))=m(ndim(N(A)))
    由于dim(N(A)) = 1 是固定的,所以我们有
    d i m ( N ( A T ) ) = m − ( n − 1 ) dim(N(A^T)) = m - (n-1) dim(N(AT))=m(n1)
    我们可知dim(N(A^T))表示有多少个独立的回路,m 表示边的数目,n 表示结点数目,所以有
    n o d e + l o o p − e d g e s = 1 node + loop - edges = 1 node+loopedges=1
    也就是著名的欧拉公式

理一遍思路

  • 最开始,我们给出一个图,我们可以认为是一个电路图,当然在默认没有外部电压、电源干涉的情况下,AX 可以理解为在 各个点电压为
    [ x 1 x 2 x 3 … … x n ] { \left[ \begin{array}{ccc} x_1 & x_2 & x3…… x_n \end{array} \right ]} [x1x2x3xn]情况下的各个边的电势差,所以我们分析,当电势差处处为0时,我们有 AX = 0,即解为A零空间,而且此空间的基一定为 [ 1 1 1 1 ] { \left[ \begin{array}{ccc} 1 \\ 1 \\ 1 \\ 1 \\ \end{array} \right ]} 1111零空间维度为1

  • 然后我们由欧姆定律:
    I = U / R I = U/R I=U/R
    可知, A X 为 U = > I = c × A X AX 为 U=> I = c \times AX AXU=>I=c×AX
    然后我们根据每个结点的流进进出相同,相加为0,所以有
    A T × I = 0 A^T \times I = 0 AT×I=0
    =>
    A T × c × A X = 0 A^T \times c \times AX = 0 AT×c×AX=0
    这个公式总是成立的,为基尔霍夫电流定律

  • 当然这个是在无外部电压、电流情况下才成立~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值