深度学习基础知识(零):目录及小伙伴贡献

本教程系统介绍了深度学习的基础知识,包括神经网络原理、梯度下降法等,并深入讲解了浅层及深层神经网络的设计与实现,适合初学者入门。

第一门课:神经网络和深度学习

第一章- 深度学习简介

    1.1简述深度学习、为什么深度学习会兴起、深度学习和机器学习以及人工智能之间的关系、学习深度学习需要什么前置知识
    1.2吴恩达深度学习课程介绍
    1.3深度学习学习资源

第二章- 神经网络基础

本章负责人:张子怡
    2.1 二分分类(以下几小节负责人:戴源志)
    2.2 logistic回归
    2.3 logistic回归损失函数
    2.4梯度下降法
    2.5.1导数 (以下几小节负责人:张子怡)
    2.5.1链式法则
    2.6.1计算图
    2.6.2 计算图的导数计算
    2.7.1 logistic 回归中的梯度下降法
    2.7.2 m 个样本的梯度下降
    2.8.1 向量化 (以下几小节负责人:陈世帆)
    2.8.2 向量化的更多例子
    2.8.3 向量化 logistic 回归
    2.8.4 向量化 logistic 回归的梯度输出
    2.9.1 Python 中的广播(以下几小节负责人:廖梓钧)
    2.9.2 关于 python / numpy 向量的说明
    2.10 Jupyter / Ipython 笔记本的快速指南
    2.11 logistic 损失函数的解释

第三章- 浅层神经网络

本章负责人:陈伊琳
    3.1 神经网络的表示 (以下几小节负责人:娄越)
    3.2 计算单样本的神经网络输出
    3.3 多样本向量化的神经网络输出
    3.4 激活函数 (以下几小节负责人:王榕)
    3.5 为什么需要非线性激活函数
    3.6 激活函数的导数
    3.7 神经网络的梯度下降法 (以下几小节负责人:李圣)
    3.8(选修)直观理解反向传播
    3.9 随机初始化
    3.10 小测 (以下几小节负责人:陈伊琳)
    3.11 编程作业:带有一个隐藏层的平面数据分类

第四章- 深层神经网络

本章负责人:廖梓钧
    4.1 深层神经网络 (以下几小节负责人:张子怡)
    4.2 深层神经网络的前向传递
    4.3 核对矩阵的维数
    4.4.1 使用深层的原因 (以下几小节负责人:娄越)
    4.4.2 与浅层的区别
    4.5.1 深层神经网络的反向向传递
    4.5.2 搭建深层神经网络块
    4.6 前向和反向传播 (以下几小节负责人:陈世帆)
    4.7 参数VS超参数
    4.8 这和大脑有什么关系
    4.9 编程作业:一步步搭建多层神经网络以及应用 (以下几小节负责人:戴源志)
    4.10 测试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Metasurface_Learn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值