第一门课:神经网络和深度学习
第一章- 深度学习简介
1.1简述深度学习、为什么深度学习会兴起、深度学习和机器学习以及人工智能之间的关系、学习深度学习需要什么前置知识
1.2吴恩达深度学习课程介绍
1.3深度学习学习资源
第二章- 神经网络基础
本章负责人:张子怡
2.1 二分分类(以下几小节负责人:戴源志)
2.2 logistic回归
2.3 logistic回归损失函数
2.4梯度下降法
2.5.1导数 (以下几小节负责人:张子怡)
2.5.1链式法则
2.6.1计算图
2.6.2 计算图的导数计算
2.7.1 logistic 回归中的梯度下降法
2.7.2 m 个样本的梯度下降
2.8.1 向量化 (以下几小节负责人:陈世帆)
2.8.2 向量化的更多例子
2.8.3 向量化 logistic 回归
2.8.4 向量化 logistic 回归的梯度输出
2.9.1 Python 中的广播(以下几小节负责人:廖梓钧)
2.9.2 关于 python / numpy 向量的说明
2.10 Jupyter / Ipython 笔记本的快速指南
2.11 logistic 损失函数的解释
第三章- 浅层神经网络
本章负责人:陈伊琳
3.1 神经网络的表示 (以下几小节负责人:娄越)
3.2 计算单样本的神经网络输出
3.3 多样本向量化的神经网络输出
3.4 激活函数 (以下几小节负责人:王榕)
3.5 为什么需要非线性激活函数
3.6 激活函数的导数
3.7 神经网络的梯度下降法 (以下几小节负责人:李圣)
3.8(选修)直观理解反向传播
3.9 随机初始化
3.10 小测 (以下几小节负责人:陈伊琳)
3.11 编程作业:带有一个隐藏层的平面数据分类
第四章- 深层神经网络
本章负责人:廖梓钧
4.1 深层神经网络 (以下几小节负责人:张子怡)
4.2 深层神经网络的前向传递
4.3 核对矩阵的维数
4.4.1 使用深层的原因 (以下几小节负责人:娄越)
4.4.2 与浅层的区别
4.5.1 深层神经网络的反向向传递
4.5.2 搭建深层神经网络块
4.6 前向和反向传播 (以下几小节负责人:陈世帆)
4.7 参数VS超参数
4.8 这和大脑有什么关系
4.9 编程作业:一步步搭建多层神经网络以及应用 (以下几小节负责人:戴源志)
4.10 测试