情绪识别简单的小项目

首先是一个大概的开发步骤:在这里插入图片描述
附上代码,来自贪心学院

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix
#读取文件参数
data = pd.read_csv('ISEAR.csv', header=None)

labels = data[0].values.tolist()
sents = data[1].values.tolist()
X_train, X_text, y_train, y_text = train_test_split(sents, labels, test_size=0.2, random_state=42)
#转换成TF向量
vectorized = TfidfVectorizer()
X_train = vectorized.fit_transform(X_train)
X_text = vectorized.transform(X_text)

#使用逻辑回归
paramter = {'C':[0.001, 0.01, 0.1, 0.05, 0.5, 2, 3, 10, 5]}
lr = LogisticRegression()
lr.fit(X_train, y_train).score(X_text, y_text)

#自动调参
clf = GridSearchCV(lr, paramter, cv=5)
clf.fit(X_train, y_train)
clf.score(X_text,y_text)
print(clf.best_params_)

result = confusion_matrix(y_text, clf.predict(X_text))
print(result)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值