问题描述
A 点有一个过河卒,需要走到目标 𝐵 点。
卒行走规则:可以向下、或者向右。同时在棋盘上的任一点有一个对方的马(如下图的 𝐶 点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点。
例如:下图 𝐶 点可以控制 99 个点(图中的 𝑃1,𝑃2…𝑃8 和 𝐶 ),卒不能通过对方马的控制点。 棋盘用坐标表示,现给定 𝐴 点位置为 (0,0), 𝐵 点位置为 (𝑛,𝑚)(𝑛,𝑚 为不超过 1010 的整数),马的位置 𝐶为 (𝑋,𝑌)(约定: 𝐶 点与 𝐴 点不重叠,与 𝐵 点也不重叠)。
要求你计算出卒从 𝐴 点能够到达 𝐵 点的路径的条数。
输入
B 点的坐标 (𝑛,𝑚)以及对方马的坐标 (𝑋,𝑌);(马的坐标一定在棋盘范围内,但要注意,可能落在边界的轴上)
输出
输出卒从 𝐴 点能够到达 𝐵 点的路径条数。
样例
输入
6 6 3 2
输出
17
话不多说,直接上答案->
#include<iostream>
using namespace std;
const int maxn=20+5;
long long f[maxn][maxn];//数据可能超出int
int b[maxn][maxn];//障碍,1表示障碍
int m,n,x,y;
// 八个xy坐标的偏移
int xy[][2]={
{-1,-2},{-1, 2},
{1, -2},{1, 2},
{-2,-1}, {-2, 1},
{2,-1}, {2, 1}
};
void dumpb()
{
for(int i=0;i<=m;i++)
{
for(int j=0;j<=n;j++)
{
cout<<b[i][j]<<" ";
}
cout<<endl;
}
}
void dumpf()
{
for(int i=0;i<=m;i++)
{
for(int j=0;j<=n;j++)
{
cout<<f[i][j]<<" ";
}
cout<<endl;
}
}
int main()
{
cin>>m>>n>>x>>y;
b[x][y]=1;// 马的位置也不能通过(题目没说,坑)
for(int i=0;i<8;i++)
{
int nx=x+xy[i][0];
int ny=y+xy[i][1];
// cout<<nx<<" " <<ny<<endl;
if(nx>=0 && nx<=m && ny>=0 && ny<=n)
b[nx][ny]=1;
}
//dumpb();
f[0][0]=1;
//初始化第0行
for(int i=1;i<=n;i++)
if(b[0][i]==1) f[0][i]=0;
else f[0][i]=f[0][i-1];
//初始化第0列
for(int i=1;i<=m;i++)
{
if(b[i][0]==1)
f[i][0]=0;
else
f[i][0]=f[i-1][0];
}
//dumpf();
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
{
if(b[i][j]==1) f[i][j]=0;
else f[i][j]=f[i-1][j]+f[i][j-1];//只能从上和左下来
}
cout<<f[m][n]<<endl;
//dumpf();
return 0;
}