东方博宜P1224过河卒答案

问题描述  

        A 点有一个过河卒,需要走到目标 𝐵 点。

卒行走规则:可以向下、或者向右。同时在棋盘上的任一点有一个对方的马(如下图的 𝐶 点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点。

例如:下图 𝐶 点可以控制 99 个点(图中的 𝑃1,𝑃2…𝑃8 和 𝐶 ),卒不能通过对方马的控制点。 棋盘用坐标表示,现给定 𝐴 点位置为 (0,0), 𝐵 点位置为 (𝑛,𝑚)(𝑛,𝑚 为不超过 1010 的整数),马的位置 𝐶为 (𝑋,𝑌)(约定: 𝐶 点与 𝐴 点不重叠,与 𝐵 点也不重叠)。

要求你计算出卒从 𝐴 点能够到达 𝐵 点的路径的条数。

输入

        B 点的坐标 (𝑛,𝑚)以及对方马的坐标 (𝑋,𝑌);(马的坐标一定在棋盘范围内,但要注意,可能落在边界的轴上)

输出

        输出卒从 𝐴 点能够到达 𝐵 点的路径条数。

样例

输入
        6 6 3 2
输出
        17

话不多说,直接上答案->

#include<iostream>
using namespace std;
const int maxn=20+5;
long long f[maxn][maxn];//数据可能超出int
int b[maxn][maxn];//障碍,1表示障碍
int m,n,x,y;
// 八个xy坐标的偏移
int xy[][2]={
     {-1,-2},{-1, 2},
     {1, -2},{1, 2},
     {-2,-1}, {-2, 1},
     {2,-1}, {2, 1}
};

void dumpb()
{
     for(int i=0;i<=m;i++)
     {
         for(int j=0;j<=n;j++)
         {
             cout<<b[i][j]<<" ";
         }
         cout<<endl;
     }   
}


void dumpf()
{
     for(int i=0;i<=m;i++)
     {
         for(int j=0;j<=n;j++)
         {
             cout<<f[i][j]<<" ";
         }
         cout<<endl;
     }   
}
int main()
{
     cin>>m>>n>>x>>y;
     b[x][y]=1;// 马的位置也不能通过(题目没说,坑)
     for(int i=0;i<8;i++)
     {
         int nx=x+xy[i][0];
         int ny=y+xy[i][1];
//        cout<<nx<<" " <<ny<<endl;
         if(nx>=0 && nx<=m && ny>=0 && ny<=n)
             b[nx][ny]=1;
     }
//dumpb();
     f[0][0]=1;
    
     //初始化第0行
     for(int i=1;i<=n;i++)
         if(b[0][i]==1) f[0][i]=0;
         else f[0][i]=f[0][i-1];
        
     //初始化第0列
     for(int i=1;i<=m;i++)
     {
         if(b[i][0]==1)
             f[i][0]=0;
         else
             f[i][0]=f[i-1][0];
     }


//dumpf();
        
     for(int i=1;i<=m;i++)
         for(int j=1;j<=n;j++)
         {
             if(b[i][j]==1) f[i][j]=0;
             else f[i][j]=f[i-1][j]+f[i][j-1];//只能从上和左下来
         }
     cout<<f[m][n]<<endl;
     
//dumpf();

    return 0;
}

以下是C语言洛谷p1002过河的代码实现和注释解析: ```c #include <stdio.h> #define MAX 21 // 定义最大值 int main() { int n, m, xh, yh, i, j, k; long long map[MAX][MAX] = {0}; // 定义地图,初始化为0 scanf("%d %d %d %d", &n, &m, &xh, &yh); // 输入信息 map[xh][yh] = -1; // 标记障碍物 for (k = 0; k < 3; k++) { // 遍历3个方向 switch (k) { case 0: i = 2; j = 1; break; // 方向1 case 1: i = 1; j = 2; break; // 方向2 case 2: i = 1; j = 1; break; // 方向3 } if (xh - i >= 0 && yh - j >= 0) { // 判断是否越界 map[xh - i][yh - j] = -1; // 标记障碍物 } if (xh + i <= n && yh + j <= m) { // 判断是否越界 map[xh + i][yh + j] = -1; // 标记障碍物 } } map[0][0] = 1; // 起点为1 for (i = 0; i <= n; i++) { // 遍历行 for (j = 0; j <= m; j++) { // 遍历列 if (map[i][j] != -1) { // 判断是否为障碍物 if (map[i - 1][j] != -1) { // 上可通过 map[i][j] += map[i - 1][j]; // 累加上方格子的值 } if (map[i][j - 1] != -1) { // 左可通过 map[i][j] += map[i][j - 1]; // 累加左方格子的值 } } } } printf("%lld\n", map[n][m]); // 输出结果 return 0; } ``` 注释解析: 1. 定义了一个二维数组`map`,用于存储地图信息,初始化为0。 2. 输入了4个整数,分别为地图的行数`n`、列数`m`、的初始位置`xh`、`yh`。 3. 标记了障碍物,即不能到达的位置。 4. 遍历了3个方向,分别为向上走2步、向左走1步;向上走1步、向左走2步;向上走1步、向左走1步。如果可以到达该位置,则标记为障碍物。 5. 起点的值为1,表示只有一种走法。 6. 遍历整个地图,如果该位置不是障碍物,则累加上方格子和左方格子的值。 7. 输出结果,即终点的值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值