球形空间产生器[BZOJ1013]

欢迎大家访问我的老师的OJ———caioj.cn

题面描述

传送门

思路

因为一个球体的球面上的所有点到圆心的距离相等,因此只需求出一个点( x 1 , x 2 , x 3 , . . . . . . , x n x_1,x_2,x_3,......,x_n x1,x2,x3,......,xn),使得:

∑ j = 1 n ( a i , j − x j ) 2 = C ( i ∈ [ 1 , n + 1 ] ) \large\sum_{j=1}^{n}(a_{i,j}-x_j)^2=C (i\in[1,n+1]) j=1n(ai,jxj)2=C(i[1,n+1])

其中 C C C为常量,球面上第 i i i个已知点的坐标为( a i , 1 , a i , 2 , . . . . . . , a i , n a_{i,1},a_{i,2},......,a_{i,n} ai,1,ai,2,......,ai,n)。

如何将这个 n + 1 n+1 n+1 n n n元二次方程组转化为线性方程组呢?观察到,方程右边都有 C C C

我们不妨两两做差,将 C C C消掉。

得到:
∑ j = 1 n ( a i , j 2 − a i + 1 , j 2 − 2 x j ( a i , j − a i + 1 , j ) ) = 0 ( i ∈ [ 1 , n ] ) \large\sum_{j=1}^{n}(a_{i,j}^2-a_{i+1,j}^2-2x_j(a_{i,j}-a_{i+1,j}))=0(i\in[1,n]) j=1n(ai,j2ai+1,j22xj(ai,jai+1,j))=0(i[1,n])

将变量放左,常量放右,有:
∑ j = 1 n 2 ( a i , j − a i + 1 , j ) x j = ∑ j = 1 n ( a i , j 2 − a i + 1 , j 2 ) ( i ∈ [ 1 , n ] ) \large\sum_{j=1}^n2(a_{i,j}-a_{i+1,j})x_j=\sum_{j=1}^n(a_{i,j}^2-a_{i+1,j}^2)(i\in[1,n]) j=1n2(ai,jai+1,j)xj=j=1n(ai,j2ai+1,j2)(i[1,n])

这就是一个线性方程组了。

[ 2 ( a 1 , 1 − a 2 , 1 ) 2 ( a 1 , 2 − a 2 , 2 ) . . . 2 ( a 1 , n − a 2 , n ) ∑ j = 1 n ( a 1 , j 2 − a 2 , j 2 ) 2 ( a 2 , 1 − a 3 , 1 ) 2 ( a 2 , 2 − a 3 , 2 ) . . . 2 ( a 2 , n − a 3 , n ) ∑ j = 1 n ( a 2 , j 2 − a 3 , j 2 ) ⋮ ⋮ ⋱ ⋮ ⋮ 2 ( a n , 1 − a n + 1 , 1 ) 2 ( a n , 2 − a n + 1 , 2 ) . . . 2 ( a n , n − a n + 1 , n ) ∑ j = 1 n ( a n , j 2 − a n + 1 , j 2 ) ] \begin{bmatrix}2(a_{1,1}-a_{2,1})&2(a_{1,2}-a_{2,2})&...&2(a_{1,n}-a_{2,n})&\large\sum_{j=1}^n(a_{1,j}^2-a_{2,j}^2)\\2(a_{2,1}-a_{3,1})&2(a_{2,2}-a_{3,2})&...&2(a_{2,n}-a_{3,n})&\large\sum_{j=1}^n(a_{2,j}^2-a_{3,j}^2)\\\vdots&\vdots&\ddots&\vdots&\vdots\\2(a_{n,1}-a_{n+1,1})&2(a_{n,2}-a_{n+1,2})&...&2(a_{n,n}-a_{n+1,n})&\large\sum_{j=1}^n(a_{n,j}^2-a_{n+1,j}^2)\end{bmatrix} 2(a1,1a2,1)2(a2,1a3,1)2(an,1an+1,1)2(a1,2a2,2)2(a2,2a3,2)2(an,2an+1,2).........2(a1,na2,n)2(a2,na3,n)2(an,nan+1,n)j=1n(a1,j2a2,j2)j=1n(a2,j2a3,j2)j=1n(an,j2an+1,j2)

高斯消元求 x j x_j xj即可。

AC code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define eps 1e-10
using namespace std;
double a[20][20],c[20][20],b[20];int n;
void gauss()
{
	for(int i=1;i<=n;i++)
	{
		int x=i;
		while(fabs(c[x][i])<eps&&x<=n)x++;
		for(int j=1;j<=n;j++)swap(c[x][j],c[i][j]);swap(b[x],b[i]);
		for(int k=1;k<=n;k++)
		{
			if(k==i)continue;
			b[k]-=c[k][i]/c[i][i]*b[i];
			for(int j=n;j>=i;j--)c[k][j]-=c[k][i]/c[i][i]*c[i][j];
		}
	}
	for(int i=1;i<n;i++)printf("%.3lf ",b[i]/c[i][i]);
	printf("%.3lf\n",b[n]/c[n][n]);
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n+1;i++)
		for(int j=1;j<=n;j++)
			scanf("%lf",&a[i][j]);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		{
			c[i][j]=2*(a[i][j]-a[i+1][j]);
			b[i]+=a[i][j]*a[i][j]-a[i+1][j]*a[i+1][j];
		}
	gauss();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值