Zap[BZOJ1101]\[POI2007]

欢迎大家访问我的老师的OJ———caioj.cn

题面描述

传送门

思路

题目要求等价于求有多少二元组 ( x , y ) (x,y) (x,y)满足 x ≤ a / k , y ≤ b / k x\le a/k,y\le b/k xa/k,yb/k并且 x , y x,y x,y互质(因为 gcd ⁡ ( x , y ) = k \operatorname{gcd}(x,y)=k gcd(x,y)=k)。

D ( a , b , k ) D(a,b,k) D(a,b,k)表示满足 x ≤ a , y ≤ b x\le a,y\le b xa,yb k ∣ gcd ⁡ ( x , y ) k \mid \gcd(x,y) kgcd(x,y)的二元组有多少对。
显然满足只要 x , y x,y x,y都是k的倍数即可。 1 1 1~ a a a之间 k k k的倍数有 ⌊ a / k ⌋ \left\lfloor a/k\right\rfloor a/k 1 1 1~ b b b之间 k k k的倍数有 ⌊ b / k ⌋ \left\lfloor b/k\right\rfloor b/k,所以 D ( a , b , k ) = ⌊ a / k ⌋ ∗ ⌊ b / k ⌋ D(a,b,k)=\left\lfloor a/k\right\rfloor* \left\lfloor b/k\right\rfloor D(a,b,k)=a/kb/k

F ( a , b ) F(a,b) F(a,b)表示满足 x ≤ a , y ≤ b x\le a,y\le b xa,yb并且 x , y x,y x,y互质的二元组有多少对。
显然, F ( a , b ) = ∑ i = 1 a ∑ j = 1 b ( gcd ⁡ ( i , j ) = = 1 ) F(a,b)=\sum_{i=1}^a\sum_{j=1}^b(\gcd(i,j)==1) F(a,b)=i=1aj=1b(gcd(i,j)==1)

F ( a , b ) = ∑ i = 1 a ∑ j = 1 b ∑ d ∣ i 并 且 d ∣ j μ ( d ) F(a,b)=\sum_{i=1}^a\sum_{j=1}^b\sum_{d\mid i并且d\mid j}\mu(d) F(a,b)=i=1aj=1bdidjμ(d)

根据容斥原理,
F ( a , b ) = ∑ i = 1 m i n ( a , b ) μ ( i ) ∗ D ( a , b , i ) F(a,b)=\sum_{i=1}^{min(a,b)}\mu(i)*D(a,b,i) F(a,b)=i=1min(a,b)μ(i)D(a,b,i)

上式的意思是,没有任何限制的二元组总数为 D ( a , b , 1 ) = a ∗ b D(a,b,1)=a*b D(a,b,1)=ab。应当减去 gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y) 2 , 3 , 5 , ⋯ 2,3,5,\cdots 2,3,5,的倍数的二元组数量,但这样有重复减掉 gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y)既是 2 2 2的倍数又是 3 3 3的倍数的二元组数量,或者既是 2 2 2的倍数又是 5 5 5的倍数的二元组数量, ⋯ ⋯ \cdots\cdots ,应该加回来,但是又重复加了既是 2 2 2的倍数又是 3 3 3的倍数也是 5 5 5的倍数的二元组数量, ⋯ ⋯ \cdots\cdots ,应该减回去。以此类推, D [ a , b , i ] D[a,b,i] D[a,b,i]的系数恰好是 M o ¨ b i u s ⁡ \operatorname{M\ddot{o}bius} Mo¨bius函数。

回顾余数之和,设 g ⁡ ( x ) = ⌊ k / ⌊ k / x ⌋ ⌋ \operatorname{g}(x)=\left\lfloor\\ k/\left\lfloor\\ k/x\right\rfloor \right\rfloor g(x)=k/k/x,可以得知 ⌊ k / g ⁡ ( x ) ⌋ = ⌊ k / x ⌋ \left\lfloor\\ k/\operatorname{g}(x) \right\rfloor=\left\lfloor\\ k/x \right\rfloor k/g(x)=k/x(为了分块处理,加速)

即可知道: ∀ i ∈ [ x , ⌊ k / ⌊ k / x ⌋ ⌋ ] , ⌊ k / i ⌋ \forall i\in[x,\left\lfloor\\ k/\left\lfloor\\ k/x\right\rfloor \right\rfloor],\left\lfloor\\ k/i \right\rfloor i[x,k/k/x],k/i都相等,即 D ( a , b , i ) = ⌊ a / i ⌋ ∗ ⌊ b / i ⌋ D(a,b,i)=\left\lfloor a/i\right\rfloor* \left\lfloor b/i\right\rfloor D(a,b,i)=a/ib/i都相等。

预处理 M o ¨ b i u s ⁡ \operatorname{M\ddot{o}bius} Mo¨bius函数的前缀和。

我们这时就可以分块做了。

AC code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define ll long long
using namespace std;
const int N=5e4+10;
const int inf=5e4;
const int M=1e4+10;
int prime[M],miu[N],m;bool v[N];
inline void g_p()
{
	m=0;memset(v,false,sizeof(v));miu[1]=1;
	for(int i=2;i<=inf;i++)
	{
		if(!v[i])prime[++m]=i,miu[i]=-1;
		for(int j=1;j<=m&&i*prime[j]<=inf;j++)
		{
			v[i*prime[j]]=1;
			if(i%prime[j]==0){miu[i*prime[j]]=0;break;}
			else miu[i*prime[j]]=-miu[i];
		}
	}
}
inline void Zap()
{
	int a,b,k;scanf("%d%d%d",&a,&b,&k);
	a/=k,b/=k;if(a>b)swap(a,b);ll ans=0;
	for(int x=1,gx;x<=a;x=gx+1)
	{
		gx=min(a/(a/x),b/(b/x));
		ans+=(ll)(miu[gx]-miu[x-1])*(a/x)*(b/x);
	}
	printf("%lld\n",ans);
}
void solve()
{
	for(int i=2;i<=inf;i++)miu[i]+=miu[i-1];
	int t;scanf("%d",&t);while(t--)Zap();
}
int main()
{
	g_p();
	solve();
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值