[HDU3507]Print Article

题面描述

传送门

思路

状态转移方程:( s s s为前缀和)

F i = min ⁡ ( F j + ( s i − s j ) 2 + m ) F_i=\min(F_j+(s_i-s_j)^2+m) Fi=min(Fj+(sisj)2+m)

决策单调性

F j + ( s i − s j ) 2 + m ≥ F k + ( s i − s j ) 2 + m F_j+(s_i-s_j)^2+m\ge F_k+(s_i-s_j)^2+m Fj+(sisj)2+mFk+(sisj)2+m

化简

F j − 2 ∗ s i ∗ s j + s j 2 ≥ F k − 2 ∗ s i ∗ s k + s k 2 F_j-2*s_i*s_j+{s_j}^2\ge F_k-2*s_i*s_k+{s_k}^2 Fj2sisj+sj2Fk2sisk+sk2

对于未来状态 t t t,证明:

F j + ( s t − s j ) 2 + m ≥ F k + ( s t − s j ) 2 + m F_j+(s_t-s_j)^2+m\ge F_k+(s_t-s_j)^2+m Fj+(stsj)2+mFk+(stsj)2+m

F j − 2 ∗ s t ∗ s j + s j 2 ≥ F k − 2 ∗ s t ∗ s k + s k 2 F_j-2*s_t*s_j+{s_j}^2\ge F_k-2*s_t*s_k+{s_k}^2 Fj2stsj+sj2Fk2stsk+sk2

s t = s i + v a l , s_t=s_i+val, st=si+val,

F j − 2 ∗ ( s i + v a l ) ∗ s j + s j 2 ≥ F k − 2 ∗ ( s i + v a l ) ∗ s k + s k 2 F_j-2*(s_i+val)*s_j+{s_j}^2\ge F_k-2*(s_i+val)*s_k+{s_k}^2 Fj2(si+val)sj+sj2Fk2(si+val)sk+sk2

F j − 2 ∗ s i ∗ s j + s j 2 ≥ F k − 2 ∗ s i ∗ s k + s k 2 F_j-2*s_i*s_j+{s_j}^2\ge F_k-2*s_i*s_k+{s_k}^2 Fj2sisj+sj2Fk2sisk+sk2

可知仅需证明:

− 2 ∗ v a l ∗ s j ≥ − 2 ∗ v a l ∗ s k -2*val*{s_j}\ge-2*val*s_k 2valsj2valsk

s j ≤ s k s_j\le s_k sjsk

得证。

踢队头

F j − 2 ∗ s i ∗ s j + s j 2 ≥ F k − 2 ∗ s i ∗ s k + s k 2 F_j-2*s_i*s_j+{s_j}^2\ge F_k-2*s_i*s_k+{s_k}^2 Fj2sisj+sj2Fk2sisk+sk2

F j − F k + s j 2 − s k 2 ≥ 2 ∗ s i ∗ ( s j − s k ) F_j-F_k+{s_j}^2-{s_k}^2\ge2*s_i*(s_j-s_k) FjFk+sj2sk22si(sjsk)

s j − s k &lt; 0 s_j-s_k&lt;0 sjsk<0

c a l c ( j , k ) = F j − F k + s j 2 − s k 2 s j − s k ≤ 2 ∗ s i calc(j,k)=\frac{F_j-F_k+{s_j}^2-{s_k}^2}{s_j-s_k}\le2*s_i calc(j,k)=sjskFjFk+sj2sk22si

c a l c ( j , k ) ≤ 2 ∗ s i calc(j,k)\le 2*s_i calc(j,k)2si时, k k k优于 j j j.

因此当 c a l c ( q h e a d , q h e a d + 1 ) ≤ 2 ∗ s i calc(q_{head},q_{head+1})\le 2*s_i calc(qhead,qhead+1)2si

h e a d + 1 head+1 head+1优于 h e a d head head

由于 s i s_i si i i i增大而增大,那么 c a l c ( q h e a d , q h e a d + 1 ) calc(q_{head},q_{head+1}) calc(qhead,qhead+1) h e a d head head增大而增大,才符合 h e a d head head为最优解,因此斜率是不断递增的。

踢队尾

根据斜率是不断递增的,仅当

c a l c ( q t a i l , i ) ≥ c a l c ( q t a i l − 1 , q t a i l ) calc(q_{tail},i)\ge calc(q_{tail-1},q_{tail}) calc(qtail,i)calc(qtail1,qtail)

斜率才满足不断递增。

故当

c a l c ( q t a i l , i ) ≤ c a l c ( q t a i l − 1 , q t a i l ) calc(q_{tail},i)\le calc(q_{tail-1},q_{tail}) calc(qtail,i)calc(qtail1,qtail)

删去队尾。

特别提醒

c i = 0 c_i=0 ci=0时, s i − 1 = s i s_{i-1}=s_i si1=si

不具有单调性,所以要进行特殊操作。

AC code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define gc getchar()
#define ll long long
using namespace std;
const int N=5e5+10;
inline void qr(ll &x)
{
	x=0;int f=1;char c=gc;
	while(c<'0'||c>'9'){if(c=='-')f=-1;c=gc;}
	while(c>='0'&&c<='9'){x=x*10+(c^48);c=gc;}
	x*=f;
}
inline void qw(ll x)
{
	if(x<0)x=-x,putchar('-');
	if(x/10)qw(x/10);
	putchar(x%10+48);
}
ll f[N],s[N];int q[N],l,r;
inline double calc(int j,int k)
{
	if(s[j]-s[k]==0)return -1e10;
	return (f[j]-f[k]+s[j]*s[j]-s[k]*s[k])/(double)(s[j]-s[k]);
}
int main()
{
	int n,m;
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		memset(s,0,sizeof(s));memset(f,0,sizeof(f));
		for(int i=1;i<=n;i++){qr(s[i]);s[i]+=s[i-1];}
		l=1;r=1;q[1]=0;
		for(int i=1;i<=n;i++)
		{
			while(l<r&&calc(q[l],q[l+1])<2.0*s[i])++l;
			f[i]=f[q[l]]+(s[i]-s[q[l]])*(s[i]-s[q[l]])+m;
			while(l<r&&calc(q[r],i)<calc(q[r-1],q[r]))--r;
			q[++r]=i;
		}
		qw(f[n]);puts("");
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值