题目
在一个二维数组array中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
数据范围:矩阵的长宽满足 0≤n,m≤500 , 矩阵中的值满足0≤val≤10^9。
进阶:空间复杂度 O(1),时间复杂度 O(n+m)。
解析
方法一:暴力遍历法
bool Find(int target, int** array, int arrayRowLen, int* arrayColLen ) {
if(array == NULL|| arrayRowLen==0 || *arrayColLen == 0) return false;
if(target < array[0][0] || target > array[arrayRowLen-1][*arrayColLen-1]) return false;
for(int i=0; i<arrayRowLen; i++)
for(int j=0; j<(*arrayColLen); j++)
if(array[i][j] == target)
return true;
return false;
这种方法时间复杂度够不上O(m+n)的要求,下面的方法可以参考
方法二:利用矩阵数字规律
由于矩阵的数字是从左到右从上到下一次递增的,因此可以利用这一点来减少搜索,即若现在的数字大于所求,则所求一定位于目前搜索数字同一行左侧或上方。
若从左上角[0][0]开始查找,第一次判断还可以确定该向上还是向下,但是第二次就不能确定方向,因为左边和上边同时都比某个位置的数小。因此应当从右上角开始查找,若当前值小于期望值,则向下移动一行查找(查找到的值即为该行的最大值,若仍小于期望值,则改行所有值都不满足条件,必须向下移动一行);若当前值大于期望值,则向左移动一列,因为上一行的末尾值一定小于期望值,才会移动到下一行。
bool Find(int target, int** array, int arrayRowLen, int* arrayColLen ) {
bool found = false;
if(array != NULL && arrayRowLen>0 && *arrayColLen > 0) //输入限制
{
int row=0, col = *arrayColLen-1; //即从整个二维表的右上方开始查找,二分才能起作用
while(row < arrayRowLen && col >= 0)
{
if(array[row][col] == target)
{
found = true;
break;
}
else if(array[row][col] > target) --col; //若搜索到的数较大,则在左侧找
else ++row; //若搜索到的数较小,则在下方找
}
}
return found;
}